Advertisements
Advertisements
प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
g(t) = 4 sec t + tan t
उत्तर
g{t) = 4 sec t + tan t
g'(t) = 4(sec t tan t) + sec2t
= 4sec t tan t + sec2t
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
g(t) = t3 cos t
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `(tanx - 1)/secx`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `sinx/x^2`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = tan θ (sin θ + cos θ)
Find the derivatives of the following functions with respect to corresponding independent variables:
y = (x2 + 5) log(1 + x) e–3x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = sin x0
Find the derivatives of the following functions with respect to corresponding independent variables:
Draw the function f'(x) if f(x) = 2x2 – 5x + 3
Differentiate the following:
y = (x2 + 4x + 6)5
Differentiate the following:
y = cos (tan x)
Differentiate the following:
y = 4 sec 5x
Differentiate the following:
y = tan (cos x)
Differentiate the following:
y = `sqrt(1 + 2tanx)`
Find the derivatives of the following:
`sqrt(x) = "e"^((x - y))`
Find the derivatives of the following:
If cos(xy) = x, show that `(-(1 + ysin(xy)))/(xsiny)`
Find the derivatives of the following:
`tan^-1sqrt((1 - cos x)/(1 + cos x)`
Find the derivatives of the following:
x = a (cos t + t sin t); y = a (sin t – t cos t)
Find the derivatives of the following:
`tan^-1 ((cos x + sin x)/(cos x - sin x))`
Find the derivatives of the following:
If y = `(cos^-1 x)^2`, prove that `(1 - x^2) ("d"^2y)/("d"x)^2 - x ("d"y)/("d"x) - 2` = 0. Hence find y2 when x = 0
Choose the correct alternative:
If y = cos (sin x2), then `("d"y)/("d"x)` at x = `sqrt(pi/2)` is
Choose the correct alternative:
If the derivative of (ax – 5)e3x at x = 0 is – 13, then the value of a is