Advertisements
Advertisements
प्रश्न
Differentiate the following:
y = (x2 + 4x + 6)5
उत्तर
Let = u = x2 + 4x + 6
⇒ `("d"u)/("d"x)` = 2x + 4
Now y = u5
⇒ `("d"y)/("d"x)` = 5u4
∴ `("d"y)/("d"x) = ("d"y)/("d"x) xx ("d"u)/("d"x)` = 5u4 (2x + 4)
= 5(x2 + 4x + 6)4 (2x + 4)
= 5(2x + 4) (x2 + 4x + 6)4
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
f(x) = x – 3 sin x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = cos x – 2 tan x
Find the derivatives of the following functions with respect to corresponding independent variables:
g(t) = 4 sec t + tan t
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `(tanx - 1)/secx`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = cosec x . cot x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = e-x . log x
Find the derivatives of the following functions with respect to corresponding independent variables:
Draw the function f'(x) if f(x) = 2x2 – 5x + 3
Differentiate the following:
y = (2x – 5)4 (8x2 – 5)–3
Differentiate the following:
f(x) = `x/sqrt(7 - 3x)`
Differentiate the following:
y = tan (cos x)
Differentiate the following:
y = `5^((-1)/x)`
Differentiate the following:
y = sin3x + cos3x
Differentiate the following:
y = `sqrt(x +sqrt(x)`
Find the derivatives of the following:
`tan^-1sqrt((1 - cos x)/(1 + cos x)`
Find the derivatives of the following:
`cos^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
If u = `tan^-1 (sqrt(1 + x^2) - 1)/x` and v = `tan^-1 x`, find `("d"u)/("d"v)`
Choose the correct alternative:
If y = `1/("a" - z)`, then `("d"z)/("d"y)` is
Choose the correct alternative:
The differential coefficient of `log_10 x` with respect to `log_x 10` is
Choose the correct alternative:
If f(x) = `{{:(2"a" - x, "for" - "a" < x < "a"),(3x - 2"a", "for" x ≥ "a"):}` , then which one of the following is true?