Advertisements
Advertisements
प्रश्न
Differentiate the following:
y = `sqrt(x +sqrt(x)`
उत्तर
y = `sqrt(x +sqrt(x)`
y = `[x + x^(1/2)]^(1/2)`
y = f(g(x))
`("d"y)/("d"x)` = f'(g(x)) . g'(x)
`("d"y)/("d"x) = 1/2 [x + x^(1/2)]^(1/2 - 1) [1 + 1/2 x^(1/2 - 1)]`
`("d"y)/("d"x) = 1/2[x + x^(1/2)]^(- 1/2) [1 + 1/2 x^(- 1/2)]`
= `1/[2x + x^(1/2)]^(1/2) [1 + 1/(2x^(1/2))]`
= `1/(2sqrt(x + sqrt(x))) xx [(2x^(1/2) + 1)/(2x^(1/2))]`
= `1/(2sqrt(x + sqrt(x))) xx [(2sqrt(x) + 1)/(2sqrt(x))]`
`("d"y)/("d"x) = (2sqrt(x) + 1)/(4sqrt(x) * sqrt(x sqrt(x))`
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
f(x) = x – 3 sin x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `x/(sin x + cosx)`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = tan θ (sin θ + cos θ)
Find the derivatives of the following functions with respect to corresponding independent variables:
y = (x2 + 5) log(1 + x) e–3x
Differentiate the following:
y = 4 sec 5x
Differentiate the following:
s(t) = `root(4)(("t"^3 + 1)/("t"^3 - 1)`
Differentiate the following:
y = sin2(cos kx)
Find the derivatives of the following:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)`
Find the derivatives of the following:
`cos^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
Find the derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `tan^-1 x`
Find the derivatives of the following:
If y = sin–1x then find y”
Find the derivatives of the following:
If y = etan–1x, show that (1 + x2)y” + (2x – 1)y’ = 0
Find the derivatives of the following:
If sin y = x sin(a + y), the prove that `("d"y)/("d"x) = (sin^2("a" + y))/sin"a"`, a ≠ nπ
Choose the correct alternative:
If y = `1/4 u^4`, u = `2/3 x^3 + 5`, then `("d"y)/("d"x)` is
Choose the correct alternative:
If y = `1/("a" - z)`, then `("d"z)/("d"y)` is
Choose the correct alternative:
If y = cos (sin x2), then `("d"y)/("d"x)` at x = `sqrt(pi/2)` is
Choose the correct alternative:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)` then `("d"y)/("d"x)` is
Choose the correct alternative:
If y = `(1 - x)^2/x^2`, then `("d"y)/("d"x)` is
Choose the correct alternative:
If f(x) = `{{:(2"a" - x, "for" - "a" < x < "a"),(3x - 2"a", "for" x ≥ "a"):}` , then which one of the following is true?