Advertisements
Advertisements
प्रश्न
Differentiate the following:
y = sin2(cos kx)
उत्तर
y = sin2(cos kx)
y = f(g(x)
`("d"y)/("d"x)` = f'(g(x)) . g'(x)
`("d"y)/("d"x)` = 2 sin(cos kx) × cos(cos kx) × – sin kx × k × 1
`("d"y)/("d"x)` = sin(2 cos kx) × – k sin kx
`("d"y)/("d"x)` = – k sin kx . sin(2 cos kx)
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = cos x – 2 tan x
Find the derivatives of the following functions with respect to corresponding independent variables:
g(t) = 4 sec t + tan t
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `x/(sin x + cosx)`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `(tanx - 1)/secx`
Find the derivatives of the following functions with respect to corresponding independent variables:
Draw the function f'(x) if f(x) = 2x2 – 5x + 3
Differentiate the following:
y = (x2 + 4x + 6)5
Differentiate the following:
y = sin (ex)
Differentiate the following:
y = cos (a3 + x3)
Differentiate the following:
y = `(x^2 + 1) root(3)(x^2 + 2)`
Differentiate the following:
y = `"e"^(3x)/(1 + "e"^x`
Differentiate the following:
y = `sqrt(x + sqrt(x + sqrt(x)`
Find the derivatives of the following:
y = `x^(cosx)`
Find the derivatives of the following:
`cos^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
sin-1 (3x – 4x3)
Find the derivatives of the following:
Find the derivative of sin x2 with respect to x2
Find the derivatives of the following:
Find the derivative with `tan^-1 ((sinx)/(1 + cos x))` with respect to `tan^-1 ((cosx)/(1 + sinx))`
Find the derivatives of the following:
If sin y = x sin(a + y), the prove that `("d"y)/("d"x) = (sin^2("a" + y))/sin"a"`, a ≠ nπ
Choose the correct alternative:
If x = a sin θ and y = b cos θ, then `("d"^2y)/("d"x^2)` is
Choose the correct alternative:
If y = `(1 - x)^2/x^2`, then `("d"y)/("d"x)` is