Advertisements
Advertisements
प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `x/(sin x + cosx)`
उत्तर
y = `x/(sin x + cosx)`
`("d"y)/("d"x) = ((sinx + cosx)(1) - x(cosx - sinx))/(sinx + cos x)^2`
`("d"y)/("d"x) = ((sinx + cosx)- x(cosx - sinx))/(sinx + cos x)^2`
`("d"y)/("d"x) = (sinx + cosx - xcosx + xsinx)/(sinx + cosx)^2`
`("d"y)/("d"x) = ((1 + x) sinx + (1 - x)cosx)/(sinx + cosx)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `(tanx - 1)/secx`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = cosec x . cot x
Differentiate the following:
y = (x2 + 4x + 6)5
Differentiate the following:
y = tan 3x
Differentiate the following:
y = `"e"^sqrt(x)`
Differentiate the following:
y = e–mx
Differentiate the following:
s(t) = `root(4)(("t"^3 + 1)/("t"^3 - 1)`
Differentiate the following:
y = `"e"^(3x)/(1 + "e"^x`
Find the derivatives of the following:
xy = yx
Find the derivatives of the following:
`tan^-1 = ((6x)/(1 - 9x^2))`
Find the derivatives of the following:
x = a (cos t + t sin t); y = a (sin t – t cos t)
Find the derivatives of the following:
sin-1 (3x – 4x3)
Find the derivatives of the following:
`tan^-1 ((cos x + sin x)/(cos x - sin x))`
Find the derivatives of the following:
If y = sin–1x then find y”
Find the derivatives of the following:
If y = `(sin^-1 x)/sqrt(1 - x^2)`, show that (1 – x2)y2 – 3xy1 – y = 0
Choose the correct alternative:
If y = cos (sin x2), then `("d"y)/("d"x)` at x = `sqrt(pi/2)` is
Choose the correct alternative:
If f(x) = x tan-1x then f'(1) is
Choose the correct alternative:
If y = `(1 - x)^2/x^2`, then `("d"y)/("d"x)` is
Choose the correct alternative:
If f(x) = `{{:(2"a" - x, "for" - "a" < x < "a"),(3x - 2"a", "for" x ≥ "a"):}` , then which one of the following is true?