Advertisements
Advertisements
प्रश्न
Find the derivatives of the following:
y = `x^(cosx)`
उत्तर
y = `x^(cosx)`
Taking log on both sides
log y = log xcos x
log y = cos x log x
Differentiating with respect to x
`1/y * ("d"y)/("d"x) = cosx xx 1/x + (logx)(- sinx)`
`1/y * ("d"y)/("d"x) = 1/x cos x - sin x * log x`
`("d"y)/("d"x) = y[cosx/x - sin x * log x]`
`("d"y)/("d"x) = x^(cosx) [cosx/x - sin x log x]`
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = sin x + cos x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = ex sin x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `x/(sin x + cosx)`
Differentiate the following:
y = `"e"^sqrt(x)`
Differentiate the following:
F(x) = (x3 + 4x)7
Differentiate the following:
h(t) = `("t" - 1/"t")^(3/2)`
Differentiate the following:
y = e–mx
Differentiate the following:
y = `5^((-1)/x)`
Find the derivatives of the following:
`sqrt(x^2 + y^2) = tan^-1 (y/x)`
Find the derivatives of the following:
`tan^-1 = ((6x)/(1 - 9x^2))`
Find the derivatives of the following:
x = `"a" cos^3"t"` ; y = `"a" sin^3"t"`
Find the derivatives of the following:
`tan^-1 ((cos x + sin x)/(cos x - sin x))`
Find the derivatives of the following:
Find the derivative of sin x2 with respect to x2
Find the derivatives of the following:
Find the derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `tan^-1 x`
Find the derivatives of the following:
If u = `tan^-1 (sqrt(1 + x^2) - 1)/x` and v = `tan^-1 x`, find `("d"u)/("d"v)`
Find the derivatives of the following:
If y = etan–1x, show that (1 + x2)y” + (2x – 1)y’ = 0
Find the derivatives of the following:
If y = `(cos^-1 x)^2`, prove that `(1 - x^2) ("d"^2y)/("d"x)^2 - x ("d"y)/("d"x) - 2` = 0. Hence find y2 when x = 0
Choose the correct alternative:
If y = cos (sin x2), then `("d"y)/("d"x)` at x = `sqrt(pi/2)` is
Choose the correct alternative:
If y = `(1 - x)^2/x^2`, then `("d"y)/("d"x)` is