Advertisements
Advertisements
प्रश्न
Find the differences between the greatest values in the following:
13Cr and 8Cr
उत्तर
The greatest value of nCr occurs at r = `"n"/2`, if n is even and at r = `("n" - 1)/2`, if n is odd.
The greatest value of 13Cr occurs at
r = `(13 - 1)/2` = 6 ...[∵ n = 13 is odd]
∴ the greatest value of 13Cr
= 13C6
= `(13!)/(6!7!)`
= `(13 xx 12 xx 11 xx 10 xx 9 xx 8)/(6 xx 5 xx 4 xx 3 xx 2 xx 1)`
= 13 × 11 × 2 × 3 × 2
= 1716
The greatest value of 8Cr occurs at
r = `8/2` = 4 ...[∵ n = 8 is even]
∴ the greatest value of 8Cr
= 8C4
= `(8!)/(4!4!)`
= `(8 xx 7 xx 6 xx 5)/(4 xx 3 xx 2 xx 1)`
= 7 × 2 × 5
= 70
∴ the difference between the greatest values of 13Cr and 8Cr
= 1716 – 70
= 1646
APPEARS IN
संबंधित प्रश्न
Find the value of `""^80"C"_2`
If `""^"n""C"_("r" - 1)` = 6435, `""^"n""C"_"r"` = 5005, `""^"n""C"_("r" + 1)` = 3003, find `""^"r""C"_5`.
Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 10
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if no three points are collinear.
Find the number of triangles formed by joining 12 points if four points are collinear.
Find n if `""^"n""C"_8 = ""^"n""C"_12`
Find n, if `""^21"C"_(6"n") = ""^21"C"_(("n"^2 + 5)`
Find the differences between the largest values in the following: `""^13"C"_r "and" ""^8"C"_r`
Find the differences between the largest values in the following: `""^15"C"_r "and" ""^11"C"_r`
In how many ways can a boy invite his 5 friends to a party so that at least three join the party?
A committee of 10 persons is to be formed from a group of 10 women and 8 men. How many possible committees will have at least 5 women? How many possible committees will have men in the majority?
A question paper has two sections. section I has 5 questions and section II has 6 questions. A student must answer at least two questions from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
Find r if 14C2r : 10C2r–4 = 143 : 10
Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 8 green balls, and 7 blue balls so that 3 balls of every colour are drawn
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
If 20 points are marked on a circle, how many chords can be drawn?
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 10
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 15
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 8
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if four points are collinear
Find the number of triangles formed by joining 12 points if four points are collinear
Find n if 2nCr–1 = 2nCr+1
Find r if 11C4 + 11C5 + 12C6 + 13C7 = 14Cr
Find the differences between the greatest values in the following:
15Cr and 11Cr
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
Five students are selected from 11. How many ways can these students be selected if two specified students are selected?
Answer the following:
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections
Answer the following:
30 objects are to be divided in three groups containing 7, 10, 13 objects. Find the number of distinct ways for doing so.
A student passes an examination if he secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
Answer the following:
Nine friends decide to go for a picnic in two groups. One group decides to go by car and the other group decides to go by train. Find the number of different ways of doing so if there must be at least 3 friends in each group.
The maximum value of z = 9x + 11y subject to 3x + 2y ≤ 12, 2x + 3y ≤ 12, x ≥ 0, y ≥ 0 is _______.
If `1/(8!) + 1/(7!) = x/(9!)`, than x is equal to ______.