Advertisements
Advertisements
प्रश्न
A student passes an examination if he secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
उत्तर
A student fail, if he does not secure the minimum marks in either 1, 2, 3, 4, 5, 6 or 7 subjects.
∴ the total number of ways in which a student can fail
= 7C1 + 7C2 + 7C3 + 7C4 + 7C5 + 7C6 + 7C7
= `7 + (7 xx 6)/(2 xx 1) + (7 xx 6 xx 5)/(3 xx 2 xx 1) + (7 xx 6 xx 5)/(3 xx 2 xx 1) + (7 xx 6)/(2 xx 1) + 7 + 1`
= 7 + 21 + 35 + 35 + 21 + 7 + 1
= 127
Alternative method:
For each subject, a student has two possible outcomes-to secure minimum marks or he does not.
∴ total number of outcomes for 7 subjects
= 2 × 2 × 2 × ... 7 times
= 27
= 128
Of these there is only one outcome in which he secures the minimum marks in all subjects to pass.
Hence, the number of ways a student can fail
= 128 – 1
= 127
APPEARS IN
संबंधित प्रश्न
Find n and r if `""^"n""C"_("r" - 1): ""^"n""C"_"r": ""^"n""C"_("r" + 1)` = 20:35:42
If `""^"n""P"_"r" = 1814400` and `""^"n""C"_"r"` = 45, find r.
Find the number of ways of selecting a team of 3 boys and 2 girls from 6 boys and 4 girls.
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
If 20 points are marked on a circle, how many chords can be drawn?
Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 10
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if four points are collinear.
Find the number of triangles formed by joining 12 points if no three points are collinear,
A word has 8 consonants and 3 vowels. How many distinct words can be formed if 4 consonants and 12 vowels are chosen?
Find n, if `""^21"C"_(6"n") = ""^21"C"_(("n"^2 + 5)`
Find n, if `""^"n""C"_("n" - 2)` = 15
Find r if `""^11"C"_4 + ""^11"C"_5 + ""^12"C"_6 + ""^13"C"_7 = ""^14"C"_"r"`
Find the differences between the largest values in the following: `""^13"C"_r "and" ""^8"C"_r`
Find the differences between the largest values in the following: `""^15"C"_r "and" ""^11"C"_r`
A group consists of 9 men and 6 women. A team of 6 is to be selected. How many of possible selections will have at least 3 women?
A question paper has two sections. section I has 5 questions and section II has 6 questions. A student must answer at least two questions from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
Five students are selected from 11. How many ways can these students be selected if two specified students are selected?
Nine friends decide to go for a picnic in two groups. One group decides to go by car and the other group decides to go by train. Find the number of different ways of doing so if there must be at least 3 friends in each group.
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 8
Find the number of triangles formed by joining 12 points if four points are collinear
Find n if nC8 = nC12
Find n if 23C3n = 23C2n+3
Find r if 11C4 + 11C5 + 12C6 + 13C7 = 14Cr
Find the value of `sum_("r" = 1)^4 ""^((21 - "r"))"C"_4`
Find the differences between the greatest values in the following:
13Cr and 8Cr
A question paper has two sections. section I has 5 questions and section II has 6 questions. A student must answer at least two question from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
Select the correct answer from the given alternatives.
The number of ways in which 5 male and 2 female members of a committee can be seated around a round table so that the two females are not seated together is
Answer the following:
A student finds 7 books of his interest but can borrow only three books. He wants to borrow the Chemistry part-II book only if Chemistry Part-I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
Answer the following:
30 objects are to be divided in three groups containing 7, 10, 13 objects. Find the number of distinct ways for doing so.
Answer the following:
Nine friends decide to go for a picnic in two groups. One group decides to go by car and the other group decides to go by train. Find the number of different ways of doing so if there must be at least 3 friends in each group.
If `1/(8!) + 1/(7!) = x/(9!)`, than x is equal to ______.
If 'n' is positive integer and three consecutive coefficient in the expansion of (1 + x)n are in the ratio 6 : 33 : 110, then n is equal to ______.
Out of 7 consonants and 4 vowels, the number of words (not necessarily meaningful) that can be made, each consisting of 3 consonants and 2 vowels, is ______.