Advertisements
Advertisements
प्रश्न
If `""^"n""P"_"r" = 1814400` and `""^"n""C"_"r"` = 45, find r.
उत्तर
`""^"n""P"_"r"` = 1814400, `""^"n""C"_"r"` = 45
∴ `(""^"n""P"_"r")/(""^"n""C"_"r")=1814400/45`
∴ `("n"!)/(("n" - "r")!)xx("r"!("n" - "r")!)/("n"!)=1814400/45`
∴ r! = 40320
∴ r! = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1
∴ r! = 8!
∴ r = 8
APPEARS IN
संबंधित प्रश्न
Find n and r if `""^"n""C"_("r" - 1): ""^"n""C"_"r": ""^"n""C"_("r" + 1)` = 20:35:42
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
Find the number of triangles formed by joining 12 points if no three points are collinear,
A word has 8 consonants and 3 vowels. How many distinct words can be formed if 4 consonants and 12 vowels are chosen?
Find the differences between the largest values in the following: `""^15"C"_r "and" ""^11"C"_r`
In how many ways can a boy invite his 5 friends to a party so that at least three join the party?
Find n if 2nC3 : nC2 = 52 : 3
Find n if nCn–3 = 84
Find n and r if nCr–1 : nCr : nCr+1 = 20 : 35 : 42
If nCr–1 = 6435, nCr = 5005, nCr+1 = 3003, find rC5
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 15
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 8
Find the number of triangles formed by joining 12 points if four points are collinear
Select the correct answer from the given alternatives.
A question paper has two parts, A and B, each containing 10 questions. If a student has to choose 8 from part A and 5 from part B, In how many ways can he choose the questions?
The maximum value of z = 9x + 11y subject to 3x + 2y ≤ 12, 2x + 3y ≤ 12, x ≥ 0, y ≥ 0 is _______.
If vertices of a parallelogram are respectively (2, 2), (3, 2), (4, 4), and (3, 4), then the angle between diagonals is ______
In how many ways can a group of 5 boys and 6 girls be formed out of 10 boys and 11 girls?
If 'n' is positive integer and three consecutive coefficient in the expansion of (1 + x)n are in the ratio 6 : 33 : 110, then n is equal to ______.