Advertisements
Advertisements
प्रश्न
Select the correct answer from the given alternatives.
A question paper has two parts, A and B, each containing 10 questions. If a student has to choose 8 from part A and 5 from part B, In how many ways can he choose the questions?
पर्याय
320
750
40
11340
उत्तर
11340
Explanation;
Number of ways to choose 8 questions from
Part A and 5 from Part B = 10C8 × 10C5
= 10C2 × 10C5
= 45 × 252
= 11340
APPEARS IN
संबंधित प्रश्न
Find the value of `""^15"C"_4 + ""^15"C"_5`
Find the value of `""^20"C"_16 - ""^19"C"_16`
Find n and r if `""^"n""C"_("r" - 1): ""^"n""C"_"r": ""^"n""C"_("r" + 1)` = 20:35:42
Find n, if `""^(2"n")"C"_("r" - 1) = ""^(2"n")"C"_("r" + 1)`
Find x if `""^"n""P"_"r" = "x" ""^"n""C"_"r"`
Find r if `""^11"C"_4 + ""^11"C"_5 + ""^12"C"_6 + ""^13"C"_7 = ""^14"C"_"r"`
Find the differences between the largest values in the following: `""^15"C"_r "and" ""^11"C"_r`
In how many ways can a boy invite his 5 friends to a party so that at least three join the party?
A question paper has two sections. section I has 5 questions and section II has 6 questions. A student must answer at least two questions from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
Find n if 2nC3 : nC2 = 52 : 3
If nPr = 1814400 and nCr = 45, find n+4Cr+3
If nCr–1 = 6435, nCr = 5005, nCr+1 = 3003, find rC5
Find the number of ways of selecting a team of 3 boys and 2 girls from 6 boys and 4 girls
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 12
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if no three points are collinear
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if four points are collinear
Find the number of triangles formed by joining 12 points if four points are collinear
Find the differences between the greatest values in the following:
15Cr and 11Cr
In how many ways can a boy invite his 5 friends to a party so that at least three join the party?
A group consists of 9 men and 6 women. A team of 6 is to be selected. How many of possible selections will have at least 3 women?
A committee of 10 persons is to be formed from a group of 10 women and 8 men. How many possible committees will have at least 5 women? How many possible committees will have men in majority?
A question paper has two sections. section I has 5 questions and section II has 6 questions. A student must answer at least two question from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
Answer the following:
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections
Answer the following:
A student finds 7 books of his interest but can borrow only three books. He wants to borrow the Chemistry part-II book only if Chemistry Part-I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
A student passes an examination if he secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
Answer the following:
Nine friends decide to go for a picnic in two groups. One group decides to go by car and the other group decides to go by train. Find the number of different ways of doing so if there must be at least 3 friends in each group.
Answer the following:
There are 4 doctors and 8 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team
If vertices of a parallelogram are respectively (2, 2), (3, 2), (4, 4), and (3, 4), then the angle between diagonals is ______
In how many ways can a group of 5 boys and 6 girls be formed out of 10 boys and 11 girls?
If 'n' is positive integer and three consecutive coefficient in the expansion of (1 + x)n are in the ratio 6 : 33 : 110, then n is equal to ______.
What is the probability of getting a “FULL HOUSE” in five cards drawn in a poker game from a standard pack of 52-cards?
[A FULL HOUSE consists of 3 cards of the same kind (eg, 3 Kings) and 2 cards of another kind (eg, 2 Aces)]