Advertisements
Advertisements
प्रश्न
Find the domain of the function f(x) = `sqrt(1 + sqrt(1 - sqrt(1 - x^2)`
उत्तर
f(x) = `sqrt(1 + sqrt(1 - sqrt(1 - x^2)`
`sqrt(1 - x^2) = sqrt((1 + x)(1 - x))`
⇒ x = – 1 or x = 1
= – 1 ≤ x ≤ 1
Domain of f(x) = {– 1, 0, 1}
APPEARS IN
संबंधित प्रश्न
Let A = [1, 2] and B = [3, 4]. Find the total number of relation from A into B.
Let A = [1, 2, 3, 4, 5, 6]. Let R be a relation on A defined by {(a, b) : a, b ∈ A, b is exactly divisible by a}
(i) Writer R in roster form
(ii) Find the domain of R
(ii) Find the range of R.
If R = {(x, y) : x, y ∈ Z, x2 + y2 ≤ 4} is a relation defined on the set Z of integers, then write domain of R.
Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, write A and B
Let A = [1, 2, 3], B = [1, 3, 5]. If relation R from A to B is given by = {(1, 3), (2, 5), (3, 3)}, Then R−1 is
Let R be a relation from a set A to a set B, then
Discuss the following relation for reflexivity, symmetricity and transitivity:
Let A be the set consisting of all the female members of a family. The relation R defined by “aRb if a is not a sister of b”
Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it symmetric
Is the given relation a function? Give reasons for your answer.
t = {(x, 3) | x is a real number
A relation on the set A = {x : |x| < 3, x ∈ Z}, where Z is the set of integers is defined by R = {(x, y) : y = |x| ≠ –1}. Then the number of elements in the power set of R is ______.