मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Find the equation of the hyperbola in the cases given below: Passing through (5, – 2) and length of the transverse axis along x-axis and of length 8 units - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the hyperbola in the cases given below:

Passing through (5, – 2) and length of the transverse axis along x-axis and of length 8 units

बेरीज

उत्तर

Transverse axis along x-axis

`x%2/"a"^2 - y^2/"b"^2` = 1

Length of transverse axis 2a = 8

⇒ a = 4

`x^2/16 - y^2/"b"^2` = 1

At (5, – 2) `25/16 - 4/"b"^2` = 1

`25/16 - 1 = 4/"b"^2`

`(25 - 16)/16 = 4/"b"^2`

⇒ `9/16 = 4/"b"^2`

b2 = `(16 xx 4)/9` = 4

Equation of hyperbola `x^2/16 - y^2/(64/9)` = 1

`x%^2/16 - (9y^2)/64` = 1

shaalaa.com
Conics
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Two Dimensional Analytical Geometry-II - Exercise 5.2 [पृष्ठ १९६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 5 Two Dimensional Analytical Geometry-II
Exercise 5.2 | Q 3. (iii) | पृष्ठ १९६

संबंधित प्रश्‍न

Find the vertex, focus, axis, directrix, and the length of the latus rectum of the parabola y2 – 8y – 8x + 24 = 0.


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

x2 = 8y


The eccentricity of the parabola is:


The distance between directrix and focus of a parabola y2 = 4ax is:


Find the equation of the parabola in the cases given below:

Passes through (2, – 3) and symmetric about y-axis


Find the equation of the parabola in the cases given below:

Vertex (1, – 2) and Focus (4, – 2)


Find the equation of the ellipse in the cases given below:

Foci `(+- 3, 0), "e"+ 1/2`


Find the equation of the ellipse in the cases given below:

Foci (0, ±4) and end points of major axis are (0, ±5)


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

x2 = 24y


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 = – 8x


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`x^2/25 + y^2/9` = 1


Prove that the length of the latus rectum of the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 is `(2"b"^2)/"a"`


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x + 3)^2/225 + (y - 4)^2/64` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

18x2 + 12y2 – 144x + 48y + 120 = 0


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

9x2 – y2 – 36x – 6y + 18 = 0


Choose the correct alternative:

The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is


Choose the correct alternative:

If P(x, y) be any point on 16x2 + 25y2 = 400 with foci F(3, 0) then PF1 + PF2 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×