Advertisements
Advertisements
प्रश्न
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`(x + 3)^2/225 + (y - 4)^2/64` = 1
उत्तर
It is an hyperbola.
The transverse axis is parallell to x axis.
a2= 225, b2 = 64
a = 15, b = 8
c2 = a2 – b2
= 225 + 64
c2 = 289
c = 17
ae = 17
5e = 17
e = `17/15`
Centre (h, k) = (– 3, 4)
Vertices (h ± a, k) = (– 3 ± 15, 4)
= (– 3 + 15, 4) and (– 3 – 15, 4)
= (12, 4) and (– 18, 4)
Foci (h ± c, k) = (– 3 ± 17, 4)
= (– 3 + 17, 4) and (– 3 – 17, 4)
= (14, 4) and (– 20, 4)
Directrix x = `+- "a"/"e" + "h"`
= `+- 15/(17/5) - 3`
= `+- 225/17 - 3`
x = `225/17 - 3` and x = `- 225/17 - 3`
= `174/17` and = `(- 276)/17`
APPEARS IN
संबंधित प्रश्न
Find the equation of the parabola whose focus is the point F(-1, -2) and the directrix is the line 4x – 3y + 2 = 0.
The parabola y2 = kx passes through the point (4, -2). Find its latus rectum and focus.
Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola
x2 = - 16y
The average variable cost of the monthly output of x tonnes of a firm producing a valuable metal is ₹ `1/5`x2 – 6x + 100. Show that the average variable cost curve is a parabola. Also, find the output and the average cost at the vertex of the parabola.
Find the axis, vertex, focus, equation of directrix and the length of latus rectum of the parabola (y - 2)2 = 4(x - 1)
The eccentricity of the parabola is:
The distance between directrix and focus of a parabola y2 = 4ax is:
Find the equation of the parabola in the cases given below:
Focus (4, 0) and directrix x = – 4
Find the equation of the parabola in the cases given below:
Passes through (2, – 3) and symmetric about y-axis
Find the equation of the parabola in the cases given below:
End points of latus rectum (4, – 8) and (4, 8)
Find the equation of the hyperbola in the cases given below:
Foci (± 2, 0), Eccentricity = `3/2`
Find the equation of the hyperbola in the cases given below:
Centre (2, 1), one of the foci (8, 1) and corresponding directrix x = 4
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`x^2/3 + y^2/10` = 1
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`(x - 3)^2/225 + (y - 4)^2/289` = 1
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
9x2 – y2 – 36x – 6y + 18 = 0
Choose the correct alternative:
The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is
Choose the correct alternative:
If P(x, y) be any point on 16x2 + 25y2 = 400 with foci F(3, 0) then PF1 + PF2 is