मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Identify the type of conic and find centre, foci, vertices, and directrices of the following: (x+1)/100+(y-2)264 = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x + 1)^2/100 + (y - 2)^2/64` = 1

बेरीज

उत्तर

It is an ellipse.

The major axis is parallel to the x-axis.

a2 = 100, b2 = 64

a = 10, b = 8

c2 = a2 – b2

= 100 – 64 = 36

c = 6

ae = 6

10e = 6

e = `6/10 = 3/5`

Centre (h, k) = (– 1, 2)

Vertices (h ± a, k) = (– 1 ± 10, 2)

= (– 1 + 10, 2) and (– 1 – 10, 2)

= (9, 2) and (– 11, 2)

Foci (h ± c, k) = (– 1 ± 6, 2)

= (– 1 + 6, 2) and (– 1 – 6, 2)

= (5, 2) and (– 7, 2)

Directrix x = `+-  "a"/"e" + "h"`

= `+-  10/(3/5) - 1`

= `+-  50/3 - 1`

x = `50/3 - 1` and x = `50/(-3) - 1`

= `47/3`  and `(- 53)/5`

shaalaa.com
Conics
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Two Dimensional Analytical Geometry-II - Exercise 5.2 [पृष्ठ १९७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 5 Two Dimensional Analytical Geometry-II
Exercise 5.2 | Q 8. (ii) | पृष्ठ १९७

संबंधित प्रश्‍न

The parabola y2 = kx passes through the point (4, -2). Find its latus rectum and focus.


The average variable cost of the monthly output of x tonnes of a firm producing a valuable metal is ₹ `1/5`x2 – 6x + 100. Show that the average variable cost curve is a parabola. Also, find the output and the average cost at the vertex of the parabola.


The profit ₹ y accumulated in thousand in x months is given by y = -x2 + 10x – 15. Find the best time to end the project.


The equation of directrix of the parabola y2 = -x is:


Find the equation of the parabola in the cases given below:

Focus (4, 0) and directrix x = – 4


Find the equation of the parabola in the cases given below:

Passes through (2, – 3) and symmetric about y-axis


Find the equation of the parabola in the cases given below:

End points of latus rectum (4, – 8) and (4, 8)


Find the equation of the hyperbola in the cases given below:

Foci (± 2, 0), Eccentricity = `3/2`


Find the equation of the hyperbola in the cases given below:

Passing through (5, – 2) and length of the transverse axis along x-axis and of length 8 units


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

x2 = 24y


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 = – 8x


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 – 4y – 8x + 12 = 0


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`x^2/3 + y^2/10` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`x^2/25 - y^2/144` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`y^2/16 - x^2/9` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x - 3)^2/225 + (y - 4)^2/289` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x + 3)^2/225 + (y - 4)^2/64` = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×