Advertisements
Advertisements
प्रश्न
The parabola y2 = kx passes through the point (4, -2). Find its latus rectum and focus.
उत्तर
y2 = kx passes through (4, -2)
(-2)2 = k(4)
⇒ 4 = 4k
⇒ k = 1
y2 = x = 4`(1/4)`x
a = `1/4`
Equation of LR is x = a or x – a = 0
i.e., x = `1/4`
⇒ 4x = 1
⇒ 4x – 1 = 0
Focus (a, 0) = `(1/4,0)`
APPEARS IN
संबंधित प्रश्न
Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola
x2 = 8y
Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola
x2 = - 16y
The double ordinate passing through the focus is:
The equation of directrix of the parabola y2 = -x is:
Find the equation of the parabola in the cases given below:
Passes through (2, – 3) and symmetric about y-axis
Find the equation of the hyperbola in the cases given below:
Centre (2, 1), one of the foci (8, 1) and corresponding directrix x = 4
Find the vertex, focus, equation of directrix and length of the latus rectum of the following:
x2 – 2x + 8y + 17 = 0
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`x^2/3 + y^2/10` = 1
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
9x2 – y2 – 36x – 6y + 18 = 0
Choose the correct alternative:
If x + y = k is a normal to the parabola y2 = 12x, then the value of k is 14