मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Find the vertex, focus, equation of directrix and length of the latus rectum of the following: x2 – 2x + 8y + 17 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

x2 – 2x + 8y + 17 = 0

बेरीज

उत्तर

x2 – 2x = -8y – 17

(x – 1)2 = – 8y – 17 + 1

(x – 1)2 = – 8y – 16

(x – 1)2 = – 8(y + 2)

It is form of (x – h)2 = – 4a(y – k)

4a = 8

⇒ a = 2

(a) Vertex be (h, k) = (1, – 2)

(b) Foeus = (0 + h, – a + k)

= (0 + 1, – 2 – 2)

= (1, – 4)

(c) Equation of the directrix is y + k + a = 0

y – 2 + 2 = 0

y = 0

(d) Length of latus rectum is 4a

= 4 × 2

= 8 units

shaalaa.com
Conics
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Two Dimensional Analytical Geometry-II - Exercise 5.2 [पृष्ठ १९७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 5 Two Dimensional Analytical Geometry-II
Exercise 5.2 | Q 4. (iv) | पृष्ठ १९७

संबंधित प्रश्‍न

Find the equation of the parabola whose focus is the point F(-1, -2) and the directrix is the line 4x – 3y + 2 = 0.


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

y2 = 20x


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

x2 = - 16y


The profit ₹ y accumulated in thousand in x months is given by y = -x2 + 10x – 15. Find the best time to end the project.


The equation of directrix of the parabola y2 = -x is:


Find the equation of the parabola in the cases given below:

Passes through (2, – 3) and symmetric about y-axis


Find the equation of the parabola in the cases given below:

End points of latus rectum (4, – 8) and (4, 8)


Find the equation of the hyperbola in the cases given below:

Foci (± 2, 0), Eccentricity = `3/2`


Find the equation of the hyperbola in the cases given below:

Centre (2, 1), one of the foci (8, 1) and corresponding directrix x = 4


Find the equation of the hyperbola in the cases given below:

Passing through (5, – 2) and length of the transverse axis along x-axis and of length 8 units


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 = – 8x


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`x^2/25 + y^2/9` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`x^2/25 - y^2/144` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`y^2/16 - x^2/9` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x + 1)^2/100 + (y - 2)^2/64` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x + 3)^2/225 + (y - 4)^2/64` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(y - 2)^3/25 + (x + 1)^2/16` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

9x2 – y2 – 36x – 6y + 18 = 0


Choose the correct alternative:

The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is


Choose the correct alternative:

If x + y = k is a normal to the parabola y2 = 12x, then the value of k is 14


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×