मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Identify the type of conic and find centre, foci, vertices, and directrices of the following: y216-x29 = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`y^2/16 - x^2/9` = 1

बेरीज

उत्तर

It is Hyperbola.

The transverse axis the y axis

a2 = 16, b2 = 9

a = 4, b = 3

c2 = a2 + b2

= 16 + 6 = 25

c = 5

ae = 5

4e = 5

e = `5/4`

(a) Centre (0, 0)

(b) Vertex (0, ± a) = (0, ± 4)

(c) Foci (0, ± ae) = (0, ± 5)

(d) Equation of the directrix

y = `+-  "a"/"e" = +- 4/(5/4) = +-  16/5`

y = `+-  16/5`

shaalaa.com
Conics
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Two Dimensional Analytical Geometry-II - Exercise 5.2 [पृष्ठ १९७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 5 Two Dimensional Analytical Geometry-II
Exercise 5.2 | Q 5. (iv) | पृष्ठ १९७

संबंधित प्रश्‍न

Find the equation of the parabola whose focus is the point F(-1, -2) and the directrix is the line 4x – 3y + 2 = 0.


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

x2 = - 16y


The average variable cost of the monthly output of x tonnes of a firm producing a valuable metal is ₹ `1/5`x2 – 6x + 100. Show that the average variable cost curve is a parabola. Also, find the output and the average cost at the vertex of the parabola.


Find the equation of the parabola which is symmetrical about x-axis and passing through (–2, –3).


The distance between directrix and focus of a parabola y2 = 4ax is:


Find the equation of the parabola in the cases given below:

Passes through (2, – 3) and symmetric about y-axis


Find the equation of the parabola in the cases given below:

Vertex (1, – 2) and Focus (4, – 2)


Find the equation of the ellipse in the cases given below:

Foci `(+- 3, 0), "e"+ 1/2`


Find the equation of the ellipse in the cases given below:

Length of latus rectum 4, distance between foci `4sqrt(2)`, centre (0, 0) and major axis as y-axis


Find the equation of the hyperbola in the cases given below:

Foci (± 2, 0), Eccentricity = `3/2`


Find the equation of the hyperbola in the cases given below:

Passing through (5, – 2) and length of the transverse axis along x-axis and of length 8 units


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 = 16x


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

x2 = 24y


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 = – 8x


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 – 4y – 8x + 12 = 0


Prove that the length of the latus rectum of the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 is `(2"b"^2)/"a"`


Show that the absolute value of difference of the focal distances of any point P on the hyperbola is the length of its transverse axis


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x + 1)^2/100 + (y - 2)^2/64` = 1


Choose the correct alternative:

If P(x, y) be any point on 16x2 + 25y2 = 400 with foci F(3, 0) then PF1 + PF2 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×