Advertisements
Advertisements
प्रश्न
Find the equation of the parabola which is symmetrical about x-axis and passing through (–2, –3).
उत्तर
Equation of the parabola symmetrical about X-axis is either y2 = 4ax or y2 = - 4ax.
Since the parabola passes through (-2, -3) it will be of the form y2 = - 4ax ...(1)
Substituting (-2, -3) in (1) we get,
y2 = - 4ax
(-3)2 = - 4a(-2)
⇒ 9 = 8a
⇒ a = `9/8`
Substituting a = `9/8` in (1) we get,
y2 = - 4ax
y2 = - 4`(9/8)`x
⇒ y2 = `(-9)/2`x
which is required equation of the parabola.
APPEARS IN
संबंधित प्रश्न
The parabola y2 = kx passes through the point (4, -2). Find its latus rectum and focus.
Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola
y2 = 20x
The average variable cost of the monthly output of x tonnes of a firm producing a valuable metal is ₹ `1/5`x2 – 6x + 100. Show that the average variable cost curve is a parabola. Also, find the output and the average cost at the vertex of the parabola.
The double ordinate passing through the focus is:
Find the equation of the ellipse in the cases given below:
Foci `(+- 3, 0), "e"+ 1/2`
Find the equation of the ellipse in the cases given below:
Foci (0, ±4) and end points of major axis are (0, ±5)
Find the equation of the hyperbola in the cases given below:
Centre (2, 1), one of the foci (8, 1) and corresponding directrix x = 4
Prove that the length of the latus rectum of the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 is `(2"b"^2)/"a"`
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`(x + 3)^2/225 + (y - 4)^2/64` = 1
Choose the correct alternative:
The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is