Advertisements
Advertisements
प्रश्न
Show that the absolute value of difference of the focal distances of any point P on the hyperbola is the length of its transverse axis
उत्तर
Let P be a point on the hyperbola.
Definition of conic
`"SP"/"PM"` = e
`"S'P"/"PM'"` = e
SP = e(PM) ……..(1)
S’P = e (PM’) ……….(2)
(2) – (1)
⇒ S’P – SP = e PM’- e PM
= e(PM’ – PM)
= e MM’
= e ZZ’ .......[∵ MM’ = ZZ’ = `(2"a")/"e"`]
= `"e"((2"a")/"e")`
S’P – SP = 2a .......(constant)
= length of the transverse axis.
APPEARS IN
संबंधित प्रश्न
Find the equation of the parabola whose focus is the point F(-1, -2) and the directrix is the line 4x – 3y + 2 = 0.
Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola
x2 = - 16y
The profit ₹ y accumulated in thousand in x months is given by y = -x2 + 10x – 15. Find the best time to end the project.
Find the equation of the parabola which is symmetrical about x-axis and passing through (–2, –3).
The eccentricity of the parabola is:
The double ordinate passing through the focus is:
Find the equation of the parabola in the cases given below:
Passes through (2, – 3) and symmetric about y-axis
Find the equation of the parabola in the cases given below:
End points of latus rectum (4, – 8) and (4, 8)
Find the vertex, focus, equation of directrix and length of the latus rectum of the following:
y2 = 16x
Find the vertex, focus, equation of directrix and length of the latus rectum of the following:
x2 – 2x + 8y + 17 = 0
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`x^2/25 - y^2/144` = 1
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`y^2/16 - x^2/9` = 1
Prove that the length of the latus rectum of the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 is `(2"b"^2)/"a"`
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`(x + 1)^2/100 + (y - 2)^2/64` = 1
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
18x2 + 12y2 – 144x + 48y + 120 = 0
Choose the correct alternative:
If x + y = k is a normal to the parabola y2 = 12x, then the value of k is 14