English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Show that the absolute value of difference of the focal distances of any point P on the hyperbola is the length of its transverse axis - Mathematics

Advertisements
Advertisements

Question

Show that the absolute value of difference of the focal distances of any point P on the hyperbola is the length of its transverse axis

Sum

Solution


Let P be a point on the hyperbola.

Definition of conic

`"SP"/"PM"` = e

`"S'P"/"PM'"` = e

SP = e(PM) ……..(1)

S’P = e (PM’) ……….(2)

(2) – (1)

⇒ S’P – SP = e PM’- e PM

= e(PM’ – PM)

= e MM’

= e ZZ’  .......[∵ MM’ = ZZ’ = `(2"a")/"e"`]

= `"e"((2"a")/"e")`

S’P – SP = 2a  .......(constant)

= length of the transverse axis.

shaalaa.com
Conics
  Is there an error in this question or solution?
Chapter 5: Two Dimensional Analytical Geometry-II - Exercise 5.2 [Page 197]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 5 Two Dimensional Analytical Geometry-II
Exercise 5.2 | Q 7 | Page 197

RELATED QUESTIONS

Find the vertex, focus, axis, directrix, and the length of the latus rectum of the parabola y2 – 8y – 8x + 24 = 0.


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

y2 = 20x


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

x2 = 8y


The average variable cost of the monthly output of x tonnes of a firm producing a valuable metal is ₹ `1/5`x2 – 6x + 100. Show that the average variable cost curve is a parabola. Also, find the output and the average cost at the vertex of the parabola.


The profit ₹ y accumulated in thousand in x months is given by y = -x2 + 10x – 15. Find the best time to end the project.


Find the axis, vertex, focus, equation of directrix and the length of latus rectum of the parabola (y - 2)2 = 4(x - 1)


The double ordinate passing through the focus is:


Find the equation of the parabola in the cases given below:

Vertex (1, – 2) and Focus (4, – 2)


Find the equation of the parabola in the cases given below:

End points of latus rectum (4, – 8) and (4, 8)


Find the equation of the ellipse in the cases given below:

Foci `(+- 3, 0), "e"+ 1/2`


Find the equation of the ellipse in the cases given below:

Length of latus rectum 8, eccentricity = `3/5` centre (0, 0) and major axis on x-axis


Find the equation of the ellipse in the cases given below:

Length of latus rectum 4, distance between foci `4sqrt(2)`, centre (0, 0) and major axis as y-axis


Find the equation of the hyperbola in the cases given below:

Centre (2, 1), one of the foci (8, 1) and corresponding directrix x = 4


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

x2 = 24y


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 = – 8x


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x - 3)^2/225 + (y - 4)^2/289` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(y - 2)^3/25 + (x + 1)^2/16` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

18x2 + 12y2 – 144x + 48y + 120 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×