English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Find the vertex, focus, equation of directrix and length of the latus rectum of the following: y2 = - 8x - Mathematics

Advertisements
Advertisements

Question

Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 = – 8x

Sum

Solution

4a = 8

a = 2

(a) Vertex V(0, 0) = (0, 0)

(b) Focus S(– a, 0) = (– 2, 0)

(c) Equation of the directrix x = a = 2

x – 2 = 0

(d) Length of the latus rectum 4a = 8

shaalaa.com
Conics
  Is there an error in this question or solution?
Chapter 5: Two Dimensional Analytical Geometry-II - Exercise 5.2 [Page 197]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 5 Two Dimensional Analytical Geometry-II
Exercise 5.2 | Q 4. (iii) | Page 197

RELATED QUESTIONS

The parabola y2 = kx passes through the point (4, -2). Find its latus rectum and focus.


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

x2 = - 16y


The profit ₹ y accumulated in thousand in x months is given by y = -x2 + 10x – 15. Find the best time to end the project.


The eccentricity of the parabola is:


The equation of directrix of the parabola y2 = -x is:


Find the equation of the parabola in the cases given below:

Passes through (2, – 3) and symmetric about y-axis


Find the equation of the parabola in the cases given below:

Vertex (1, – 2) and Focus (4, – 2)


Find the equation of the ellipse in the cases given below:

Length of latus rectum 8, eccentricity = `3/5` centre (0, 0) and major axis on x-axis


Find the equation of the hyperbola in the cases given below:

Foci (± 2, 0), Eccentricity = `3/2`


Find the equation of the hyperbola in the cases given below:

Centre (2, 1), one of the foci (8, 1) and corresponding directrix x = 4


Find the equation of the hyperbola in the cases given below:

Passing through (5, – 2) and length of the transverse axis along x-axis and of length 8 units


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 = 16x


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 – 4y – 8x + 12 = 0


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`x^2/3 + y^2/10` = 1


Prove that the length of the latus rectum of the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 is `(2"b"^2)/"a"`


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

18x2 + 12y2 – 144x + 48y + 120 = 0


Choose the correct alternative:

If P(x, y) be any point on 16x2 + 25y2 = 400 with foci F(3, 0) then PF1 + PF2 is


Choose the correct alternative:

If x + y = k is a normal to the parabola y2 = 12x, then the value of k is 14


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×