Advertisements
Advertisements
Question
Find the equation of the parabola in the cases given below:
Passes through (2, – 3) and symmetric about y-axis
Solution
x2 = 4ay
It passes through (2, – 3)
⇒ 22 = 4a(– 3)
4 = – 12a
⇒ a = `- 1/3`
⇒ 4a = `- 4/3`
∴ Equation of parabola is x2 = `- 4/3`y
3x2= – 4y
APPEARS IN
RELATED QUESTIONS
The parabola y2 = kx passes through the point (4, -2). Find its latus rectum and focus.
Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola
y2 = 20x
Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola
x2 = - 16y
Find the equation of the parabola which is symmetrical about x-axis and passing through (–2, –3).
The focus of the parabola x2 = 16y is:
The eccentricity of the parabola is:
The double ordinate passing through the focus is:
The equation of directrix of the parabola y2 = -x is:
Find the equation of the parabola in the cases given below:
Vertex (1, – 2) and Focus (4, – 2)
Find the equation of the hyperbola in the cases given below:
Passing through (5, – 2) and length of the transverse axis along x-axis and of length 8 units
Find the vertex, focus, equation of directrix and length of the latus rectum of the following:
x2 = 24y
Find the vertex, focus, equation of directrix and length of the latus rectum of the following:
y2 – 4y – 8x + 12 = 0
Prove that the length of the latus rectum of the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 is `(2"b"^2)/"a"`
Show that the absolute value of difference of the focal distances of any point P on the hyperbola is the length of its transverse axis
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
18x2 + 12y2 – 144x + 48y + 120 = 0
Choose the correct alternative:
The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is
Choose the correct alternative:
If P(x, y) be any point on 16x2 + 25y2 = 400 with foci F(3, 0) then PF1 + PF2 is