English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Find the vertex, focus, equation of directrix and length of the latus rectum of the following: y2 = 16x - Mathematics

Advertisements
Advertisements

Question

Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 = 16x

Sum

Solution


4a = 16

a = 4

(a) Vertex V(0, 0)

(b) Focus S(a, 0) = S(4, 0)

(c) Equation of the directrix x = – a

x = – 4

⇒ x + 4 = 0

(d) Length of the latus rectum = 4a

= 4(4)

= 16

shaalaa.com
Conics
  Is there an error in this question or solution?
Chapter 5: Two Dimensional Analytical Geometry-II - Exercise 5.2 [Page 197]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 5 Two Dimensional Analytical Geometry-II
Exercise 5.2 | Q 4. (i) | Page 197

RELATED QUESTIONS

The parabola y2 = kx passes through the point (4, -2). Find its latus rectum and focus.


Find the vertex, focus, axis, directrix, and the length of the latus rectum of the parabola y2 – 8y – 8x + 24 = 0.


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

y2 = 20x


The equation of directrix of the parabola y2 = -x is:


Find the equation of the parabola in the cases given below:

Focus (4, 0) and directrix x = – 4


Find the equation of the parabola in the cases given below:

End points of latus rectum (4, – 8) and (4, 8)


Find the equation of the ellipse in the cases given below:

Foci `(+- 3, 0), "e"+ 1/2`


Find the equation of the ellipse in the cases given below:

Length of latus rectum 4, distance between foci `4sqrt(2)`, centre (0, 0) and major axis as y-axis


Find the equation of the hyperbola in the cases given below:

Centre (2, 1), one of the foci (8, 1) and corresponding directrix x = 4


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

x2 = 24y


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

x2 – 2x + 8y + 17 = 0


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`x^2/3 + y^2/10` = 1


Prove that the length of the latus rectum of the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 is `(2"b"^2)/"a"`


Show that the absolute value of difference of the focal distances of any point P on the hyperbola is the length of its transverse axis


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x - 3)^2/225 + (y - 4)^2/289` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x + 1)^2/100 + (y - 2)^2/64` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x + 3)^2/225 + (y - 4)^2/64` = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×