English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Find the equation of the parabola in the cases given below: End points of latus rectum (4, – 8) and (4, 8) - Mathematics

Advertisements
Advertisements

Question

Find the equation of the parabola in the cases given below:

End points of latus rectum (4, – 8) and (4, 8)

Sum

Solution


Focus = (4, 0)

Equation of the parabola will be of the form y2 = 4ax

Here a = 4

⇒ y2 = 16x

shaalaa.com
Conics
  Is there an error in this question or solution?
Chapter 5: Two Dimensional Analytical Geometry-II - Exercise 5.2 [Page 196]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 5 Two Dimensional Analytical Geometry-II
Exercise 5.2 | Q 1. (iv) | Page 196

RELATED QUESTIONS

Find the equation of the parabola whose focus is the point F(-1, -2) and the directrix is the line 4x – 3y + 2 = 0.


The profit ₹ y accumulated in thousand in x months is given by y = -x2 + 10x – 15. Find the best time to end the project.


Find the equation of the parabola which is symmetrical about x-axis and passing through (–2, –3).


Find the axis, vertex, focus, equation of directrix and the length of latus rectum of the parabola (y - 2)2 = 4(x - 1)


The focus of the parabola x2 = 16y is:


The double ordinate passing through the focus is:


Find the equation of the parabola in the cases given below:

Vertex (1, – 2) and Focus (4, – 2)


Find the equation of the ellipse in the cases given below:

Foci (0, ±4) and end points of major axis are (0, ±5)


Find the equation of the hyperbola in the cases given below:

Foci (± 2, 0), Eccentricity = `3/2`


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 = 16x


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 = – 8x


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

x2 – 2x + 8y + 17 = 0


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 – 4y – 8x + 12 = 0


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`x^2/25 + y^2/9` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`x^2/25 - y^2/144` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x + 1)^2/100 + (y - 2)^2/64` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x + 3)^2/225 + (y - 4)^2/64` = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.