English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Identify the type of conic and find centre, foci, vertices, and directrices of the following: (x+1)/100+(y-2)264 = 1 - Mathematics

Advertisements
Advertisements

Question

Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x + 1)^2/100 + (y - 2)^2/64` = 1

Sum

Solution

It is an ellipse.

The major axis is parallel to the x-axis.

a2 = 100, b2 = 64

a = 10, b = 8

c2 = a2 – b2

= 100 – 64 = 36

c = 6

ae = 6

10e = 6

e = `6/10 = 3/5`

Centre (h, k) = (– 1, 2)

Vertices (h ± a, k) = (– 1 ± 10, 2)

= (– 1 + 10, 2) and (– 1 – 10, 2)

= (9, 2) and (– 11, 2)

Foci (h ± c, k) = (– 1 ± 6, 2)

= (– 1 + 6, 2) and (– 1 – 6, 2)

= (5, 2) and (– 7, 2)

Directrix x = `+-  "a"/"e" + "h"`

= `+-  10/(3/5) - 1`

= `+-  50/3 - 1`

x = `50/3 - 1` and x = `50/(-3) - 1`

= `47/3`  and `(- 53)/5`

shaalaa.com
Conics
  Is there an error in this question or solution?
Chapter 5: Two Dimensional Analytical Geometry-II - Exercise 5.2 [Page 197]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 5 Two Dimensional Analytical Geometry-II
Exercise 5.2 | Q 8. (ii) | Page 197

RELATED QUESTIONS

Find the equation of the parabola whose focus is the point F(-1, -2) and the directrix is the line 4x – 3y + 2 = 0.


The parabola y2 = kx passes through the point (4, -2). Find its latus rectum and focus.


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

x2 = 8y


Find the equation of the parabola which is symmetrical about x-axis and passing through (–2, –3).


Find the axis, vertex, focus, equation of directrix and the length of latus rectum of the parabola (y - 2)2 = 4(x - 1)


The double ordinate passing through the focus is:


The distance between directrix and focus of a parabola y2 = 4ax is:


Find the equation of the parabola in the cases given below:

Passes through (2, – 3) and symmetric about y-axis


Find the equation of the parabola in the cases given below:

End points of latus rectum (4, – 8) and (4, 8)


Find the equation of the ellipse in the cases given below:

Foci `(+- 3, 0), "e"+ 1/2`


Find the equation of the ellipse in the cases given below:

Foci (0, ±4) and end points of major axis are (0, ±5)


Find the equation of the ellipse in the cases given below:

Length of latus rectum 4, distance between foci `4sqrt(2)`, centre (0, 0) and major axis as y-axis


Find the equation of the hyperbola in the cases given below:

Passing through (5, – 2) and length of the transverse axis along x-axis and of length 8 units


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`x^2/25 + y^2/9` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`x^2/25 - y^2/144` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`y^2/16 - x^2/9` = 1


Show that the absolute value of difference of the focal distances of any point P on the hyperbola is the length of its transverse axis


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

9x2 – y2 – 36x – 6y + 18 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×