Advertisements
Advertisements
Question
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`(x + 1)^2/100 + (y - 2)^2/64` = 1
Solution
It is an ellipse.
The major axis is parallel to the x-axis.
a2 = 100, b2 = 64
a = 10, b = 8
c2 = a2 – b2
= 100 – 64 = 36
c = 6
ae = 6
10e = 6
e = `6/10 = 3/5`
Centre (h, k) = (– 1, 2)
Vertices (h ± a, k) = (– 1 ± 10, 2)
= (– 1 + 10, 2) and (– 1 – 10, 2)
= (9, 2) and (– 11, 2)
Foci (h ± c, k) = (– 1 ± 6, 2)
= (– 1 + 6, 2) and (– 1 – 6, 2)
= (5, 2) and (– 7, 2)
Directrix x = `+- "a"/"e" + "h"`
= `+- 10/(3/5) - 1`
= `+- 50/3 - 1`
x = `50/3 - 1` and x = `50/(-3) - 1`
= `47/3` and `(- 53)/5`
APPEARS IN
RELATED QUESTIONS
Find the equation of the parabola whose focus is the point F(-1, -2) and the directrix is the line 4x – 3y + 2 = 0.
The parabola y2 = kx passes through the point (4, -2). Find its latus rectum and focus.
Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola
x2 = 8y
Find the equation of the parabola which is symmetrical about x-axis and passing through (–2, –3).
Find the axis, vertex, focus, equation of directrix and the length of latus rectum of the parabola (y - 2)2 = 4(x - 1)
The double ordinate passing through the focus is:
The distance between directrix and focus of a parabola y2 = 4ax is:
Find the equation of the parabola in the cases given below:
Passes through (2, – 3) and symmetric about y-axis
Find the equation of the parabola in the cases given below:
End points of latus rectum (4, – 8) and (4, 8)
Find the equation of the ellipse in the cases given below:
Foci `(+- 3, 0), "e"+ 1/2`
Find the equation of the ellipse in the cases given below:
Foci (0, ±4) and end points of major axis are (0, ±5)
Find the equation of the ellipse in the cases given below:
Length of latus rectum 4, distance between foci `4sqrt(2)`, centre (0, 0) and major axis as y-axis
Find the equation of the hyperbola in the cases given below:
Passing through (5, – 2) and length of the transverse axis along x-axis and of length 8 units
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`x^2/25 + y^2/9` = 1
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`x^2/25 - y^2/144` = 1
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`y^2/16 - x^2/9` = 1
Show that the absolute value of difference of the focal distances of any point P on the hyperbola is the length of its transverse axis
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
9x2 – y2 – 36x – 6y + 18 = 0