Advertisements
Advertisements
प्रश्न
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`(x + 1)^2/100 + (y - 2)^2/64` = 1
उत्तर
It is an ellipse.
The major axis is parallel to the x-axis.
a2 = 100, b2 = 64
a = 10, b = 8
c2 = a2 – b2
= 100 – 64 = 36
c = 6
ae = 6
10e = 6
e = `6/10 = 3/5`
Centre (h, k) = (– 1, 2)
Vertices (h ± a, k) = (– 1 ± 10, 2)
= (– 1 + 10, 2) and (– 1 – 10, 2)
= (9, 2) and (– 11, 2)
Foci (h ± c, k) = (– 1 ± 6, 2)
= (– 1 + 6, 2) and (– 1 – 6, 2)
= (5, 2) and (– 7, 2)
Directrix x = `+- "a"/"e" + "h"`
= `+- 10/(3/5) - 1`
= `+- 50/3 - 1`
x = `50/3 - 1` and x = `50/(-3) - 1`
= `47/3` and `(- 53)/5`
APPEARS IN
संबंधित प्रश्न
Find the equation of the parabola whose focus is the point F(-1, -2) and the directrix is the line 4x – 3y + 2 = 0.
The parabola y2 = kx passes through the point (4, -2). Find its latus rectum and focus.
Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola
x2 = 8y
The eccentricity of the parabola is:
The double ordinate passing through the focus is:
The equation of directrix of the parabola y2 = -x is:
Find the equation of the parabola in the cases given below:
Passes through (2, – 3) and symmetric about y-axis
Find the equation of the parabola in the cases given below:
Vertex (1, – 2) and Focus (4, – 2)
Find the equation of the hyperbola in the cases given below:
Centre (2, 1), one of the foci (8, 1) and corresponding directrix x = 4
Find the equation of the hyperbola in the cases given below:
Passing through (5, – 2) and length of the transverse axis along x-axis and of length 8 units
Find the vertex, focus, equation of directrix and length of the latus rectum of the following:
x2 = 24y
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`x^2/25 - y^2/144` = 1
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`y^2/16 - x^2/9` = 1
Prove that the length of the latus rectum of the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 is `(2"b"^2)/"a"`
Show that the absolute value of difference of the focal distances of any point P on the hyperbola is the length of its transverse axis
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
18x2 + 12y2 – 144x + 48y + 120 = 0
Choose the correct alternative:
The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is
Choose the correct alternative:
If P(x, y) be any point on 16x2 + 25y2 = 400 with foci F(3, 0) then PF1 + PF2 is
Choose the correct alternative:
If x + y = k is a normal to the parabola y2 = 12x, then the value of k is 14