Advertisements
Advertisements
प्रश्न
Find the vertex, focus, equation of directrix and length of the latus rectum of the following:
x2 = 24y
उत्तर
(a) Vertex V(0, 0)
(b) Focus S (0, a) = S(0, 6)
(c) Equation of the directrix y = – a = – 6
⇒ y + 6 = 0
(d) Length of the latus rectum = 4a
= 4(6)
= 24
APPEARS IN
संबंधित प्रश्न
Find the equation of the parabola whose focus is the point F(-1, -2) and the directrix is the line 4x – 3y + 2 = 0.
The parabola y2 = kx passes through the point (4, -2). Find its latus rectum and focus.
Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola
y2 = 20x
The profit ₹ y accumulated in thousand in x months is given by y = -x2 + 10x – 15. Find the best time to end the project.
Find the axis, vertex, focus, equation of directrix and the length of latus rectum of the parabola (y - 2)2 = 4(x - 1)
The eccentricity of the parabola is:
The double ordinate passing through the focus is:
The distance between directrix and focus of a parabola y2 = 4ax is:
Find the equation of the parabola in the cases given below:
Passes through (2, – 3) and symmetric about y-axis
Find the equation of the hyperbola in the cases given below:
Foci (± 2, 0), Eccentricity = `3/2`
Find the equation of the hyperbola in the cases given below:
Passing through (5, – 2) and length of the transverse axis along x-axis and of length 8 units
Find the vertex, focus, equation of directrix and length of the latus rectum of the following:
y2 = – 8x
Find the vertex, focus, equation of directrix and length of the latus rectum of the following:
y2 – 4y – 8x + 12 = 0
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`x^2/25 - y^2/144` = 1
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`(x - 3)^2/225 + (y - 4)^2/289` = 1
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`(x + 1)^2/100 + (y - 2)^2/64` = 1
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`(x + 3)^2/225 + (y - 4)^2/64` = 1
Choose the correct alternative:
If x + y = k is a normal to the parabola y2 = 12x, then the value of k is 14