Advertisements
Advertisements
प्रश्न
The profit ₹ y accumulated in thousand in x months is given by y = -x2 + 10x – 15. Find the best time to end the project.
उत्तर
y = -x2 + 10x – 15
⇒ y = -[x2 – 10x + 52 – 52 + 15]
⇒ y = -[(x – 5)2 – 10]
⇒ y = 10 – (x – 5)2
⇒ (x – 5)2 = -(y – 10)
This is a parabola which is open downwards.
Vertex is the maximum point.
∴ Profit is maximum when x – 5 = 0 (or) x = 5 months.
After that profit gradually reduces.
∴ The best time to end the project is after 5 months.
APPEARS IN
संबंधित प्रश्न
Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola
x2 = 8y
The eccentricity of the parabola is:
The distance between directrix and focus of a parabola y2 = 4ax is:
The equation of directrix of the parabola y2 = -x is:
Find the equation of the parabola in the cases given below:
Vertex (1, – 2) and Focus (4, – 2)
Find the equation of the ellipse in the cases given below:
Foci (0, ±4) and end points of major axis are (0, ±5)
Find the vertex, focus, equation of directrix and length of the latus rectum of the following:
y2 = 16x
Find the vertex, focus, equation of directrix and length of the latus rectum of the following:
y2 = – 8x
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`(x - 3)^2/225 + (y - 4)^2/289` = 1
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`(x + 1)^2/100 + (y - 2)^2/64` = 1