हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Find the equation of the parabola in the cases given below: Vertex (1, – 2) and Focus (4, – 2) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the parabola in the cases given below:

Vertex (1, – 2) and Focus (4, – 2)

योग

उत्तर


In given data the parabola is open rightwards and symmetric about the line parallel to x-axis.

Equation of parabola

(y – k)2 = 4a(x – h)

Vertex (h, k) = (1, – 2)

(y + 2)2 = 4a(x – 1)

a = AS = 3

Equation of parabola

(y + 2)2 = 4(3)(x – 1)

(y + 2)2 = 12(x – 1)

shaalaa.com
Conics
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Two Dimensional Analytical Geometry-II - Exercise 5.2 [पृष्ठ १९६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 5 Two Dimensional Analytical Geometry-II
Exercise 5.2 | Q 1. (iii) | पृष्ठ १९६

संबंधित प्रश्न

Find the equation of the parabola whose focus is the point F(-1, -2) and the directrix is the line 4x – 3y + 2 = 0.


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

y2 = 20x


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

x2 = 8y


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

x2 = - 16y


The average variable cost of the monthly output of x tonnes of a firm producing a valuable metal is ₹ `1/5`x2 – 6x + 100. Show that the average variable cost curve is a parabola. Also, find the output and the average cost at the vertex of the parabola.


Find the equation of the parabola which is symmetrical about x-axis and passing through (–2, –3).


The focus of the parabola x2 = 16y is:


The eccentricity of the parabola is:


The double ordinate passing through the focus is:


Find the equation of the ellipse in the cases given below:

Length of latus rectum 8, eccentricity = `3/5` centre (0, 0) and major axis on x-axis


Find the equation of the ellipse in the cases given below:

Length of latus rectum 4, distance between foci `4sqrt(2)`, centre (0, 0) and major axis as y-axis


Find the equation of the hyperbola in the cases given below:

Centre (2, 1), one of the foci (8, 1) and corresponding directrix x = 4


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 = – 8x


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

x2 – 2x + 8y + 17 = 0


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 – 4y – 8x + 12 = 0


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`y^2/16 - x^2/9` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

18x2 + 12y2 – 144x + 48y + 120 = 0


Choose the correct alternative:

The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×