Advertisements
Advertisements
प्रश्न
Find the vertex, focus, equation of directrix and length of the latus rectum of the following:
y2 – 4y – 8x + 12 = 0
उत्तर
y2 – 4y = 8x – 12
(y – 2)2 = 8x – 12 + 4
= 8x – 8
= 8(x – 1)
(y – 2)2 = 8(x – 1)
It is form of (y – k)2 = Aa(x – h)
4a = 8
⇒ a = 2
(a) Vertex (h, k) = (1, 2)
(b) Focus = (a + h, 0 + k)
= (2 + 1, 0 + 2)
= (3, 2)
(c) Equation of the directrix x = – a + h
= – 2 + 1
= – 1
x + 1 = 0
(d) Length of latus rectum is
4a = 4 × 2
= 8 units.
APPEARS IN
संबंधित प्रश्न
Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola
x2 = 8y
The average variable cost of the monthly output of x tonnes of a firm producing a valuable metal is ₹ `1/5`x2 – 6x + 100. Show that the average variable cost curve is a parabola. Also, find the output and the average cost at the vertex of the parabola.
Find the equation of the parabola in the cases given below:
Focus (4, 0) and directrix x = – 4
Find the equation of the parabola in the cases given below:
Vertex (1, – 2) and Focus (4, – 2)
Find the equation of the ellipse in the cases given below:
Length of latus rectum 8, eccentricity = `3/5` centre (0, 0) and major axis on x-axis
Find the equation of the hyperbola in the cases given below:
Centre (2, 1), one of the foci (8, 1) and corresponding directrix x = 4
Find the vertex, focus, equation of directrix and length of the latus rectum of the following:
x2 – 2x + 8y + 17 = 0
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`x^2/3 + y^2/10` = 1
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`x^2/25 - y^2/144` = 1
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`y^2/16 - x^2/9` = 1
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`(x + 1)^2/100 + (y - 2)^2/64` = 1
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`(x + 3)^2/225 + (y - 4)^2/64` = 1
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
18x2 + 12y2 – 144x + 48y + 120 = 0
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
9x2 – y2 – 36x – 6y + 18 = 0
Choose the correct alternative:
If P(x, y) be any point on 16x2 + 25y2 = 400 with foci F(3, 0) then PF1 + PF2 is
Choose the correct alternative:
If x + y = k is a normal to the parabola y2 = 12x, then the value of k is 14