हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Find the vertex, focus, equation of directrix and length of the latus rectum of the following: y2 – 4y – 8x + 12 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 – 4y – 8x + 12 = 0

योग

उत्तर


y2 – 4y = 8x – 12

(y – 2)2 = 8x – 12 + 4

= 8x – 8

= 8(x – 1)

(y – 2)2 = 8(x – 1)

It is form of (y – k)2 = Aa(x – h)

4a = 8

⇒ a = 2

(a) Vertex (h, k) = (1, 2)

(b) Focus = (a + h, 0 + k)

= (2 + 1, 0 + 2)

= (3, 2)

(c) Equation of the directrix x = – a + h

= – 2 + 1

= – 1

x + 1 = 0

(d) Length of latus rectum is

4a = 4 × 2

= 8 units.

shaalaa.com
Conics
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Two Dimensional Analytical Geometry-II - Exercise 5.2 [पृष्ठ १९७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 5 Two Dimensional Analytical Geometry-II
Exercise 5.2 | Q 4. (v) | पृष्ठ १९७

संबंधित प्रश्न

Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

x2 = 8y


The average variable cost of the monthly output of x tonnes of a firm producing a valuable metal is ₹ `1/5`x2 – 6x + 100. Show that the average variable cost curve is a parabola. Also, find the output and the average cost at the vertex of the parabola.


Find the equation of the parabola in the cases given below:

Focus (4, 0) and directrix x = – 4


Find the equation of the parabola in the cases given below:

Vertex (1, – 2) and Focus (4, – 2)


Find the equation of the ellipse in the cases given below:

Length of latus rectum 8, eccentricity = `3/5` centre (0, 0) and major axis on x-axis


Find the equation of the hyperbola in the cases given below:

Centre (2, 1), one of the foci (8, 1) and corresponding directrix x = 4


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

x2 – 2x + 8y + 17 = 0


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`x^2/3 + y^2/10` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`x^2/25 - y^2/144` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`y^2/16 - x^2/9` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x + 1)^2/100 + (y - 2)^2/64` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x + 3)^2/225 + (y - 4)^2/64` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

18x2 + 12y2 – 144x + 48y + 120 = 0


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

9x2 – y2 – 36x – 6y + 18 = 0


Choose the correct alternative:

If P(x, y) be any point on 16x2 + 25y2 = 400 with foci F(3, 0) then PF1 + PF2 is


Choose the correct alternative:

If x + y = k is a normal to the parabola y2 = 12x, then the value of k is 14


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×