हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Identify the type of conic and find centre, foci, vertices, and directrices of the following: x23+y210 = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`x^2/3 + y^2/10` = 1

योग

उत्तर

It is an ellipse.

The major axis is along y-axis

a2 = 10, b2 = 3

a = `sqrt(10)`, b = `sqrt(3)`

c2 = a2 – b2

= 10 – 3

= 7

c = `sqrt(7)`

ae = `sqrt(7)`

`sqrt(10) = sqrt(7)`

e = `sqrt(7/10)`

(a) Centre (0, 0)

(b) Vertex (0, ± a) = `(0, +-  sqrt(10))`

(c) Foci (0, ± c) – `(0, +-  sqrt(7))`

(d) Equation of the directrix a

y = `+-  "a"/"e"`

= `+-  sqrt(10)/sqrt(7) * sqrt(10)`

= `+-  10/sqrt(7)`

y = `+-  10/sqrt(7)`

shaalaa.com
Conics
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Two Dimensional Analytical Geometry-II - Exercise 5.2 [पृष्ठ १९७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 5 Two Dimensional Analytical Geometry-II
Exercise 5.2 | Q 5. (ii) | पृष्ठ १९७

संबंधित प्रश्न

The parabola y2 = kx passes through the point (4, -2). Find its latus rectum and focus.


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

y2 = 20x


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

x2 = 8y


The profit ₹ y accumulated in thousand in x months is given by y = -x2 + 10x – 15. Find the best time to end the project.


The focus of the parabola x2 = 16y is:


The distance between directrix and focus of a parabola y2 = 4ax is:


Find the equation of the parabola in the cases given below:

Focus (4, 0) and directrix x = – 4


Find the equation of the parabola in the cases given below:

End points of latus rectum (4, – 8) and (4, 8)


Find the equation of the ellipse in the cases given below:

Foci `(+- 3, 0), "e"+ 1/2`


Find the equation of the ellipse in the cases given below:

Foci (0, ±4) and end points of major axis are (0, ±5)


Find the equation of the hyperbola in the cases given below:

Centre (2, 1), one of the foci (8, 1) and corresponding directrix x = 4


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 = 16x


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

x2 = 24y


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 = – 8x


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`y^2/16 - x^2/9` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x + 3)^2/225 + (y - 4)^2/64` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(y - 2)^3/25 + (x + 1)^2/16` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

9x2 – y2 – 36x – 6y + 18 = 0


Choose the correct alternative:

If P(x, y) be any point on 16x2 + 25y2 = 400 with foci F(3, 0) then PF1 + PF2 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×