हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Identify the type of conic and find centre, foci, vertices, and directrices of the following: y216-x29 = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`y^2/16 - x^2/9` = 1

योग

उत्तर

It is Hyperbola.

The transverse axis the y axis

a2 = 16, b2 = 9

a = 4, b = 3

c2 = a2 + b2

= 16 + 6 = 25

c = 5

ae = 5

4e = 5

e = `5/4`

(a) Centre (0, 0)

(b) Vertex (0, ± a) = (0, ± 4)

(c) Foci (0, ± ae) = (0, ± 5)

(d) Equation of the directrix

y = `+-  "a"/"e" = +- 4/(5/4) = +-  16/5`

y = `+-  16/5`

shaalaa.com
Conics
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Two Dimensional Analytical Geometry-II - Exercise 5.2 [पृष्ठ १९७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 5 Two Dimensional Analytical Geometry-II
Exercise 5.2 | Q 5. (iv) | पृष्ठ १९७

संबंधित प्रश्न

The parabola y2 = kx passes through the point (4, -2). Find its latus rectum and focus.


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

y2 = 20x


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

x2 = 8y


Find the axis, vertex, focus, equation of directrix and the length of latus rectum of the parabola (y - 2)2 = 4(x - 1)


The focus of the parabola x2 = 16y is:


The double ordinate passing through the focus is:


The equation of directrix of the parabola y2 = -x is:


Find the equation of the parabola in the cases given below:

Passes through (2, – 3) and symmetric about y-axis


Find the equation of the parabola in the cases given below:

Vertex (1, – 2) and Focus (4, – 2)


Find the equation of the parabola in the cases given below:

End points of latus rectum (4, – 8) and (4, 8)


Find the equation of the ellipse in the cases given below:

Length of latus rectum 4, distance between foci `4sqrt(2)`, centre (0, 0) and major axis as y-axis


Find the equation of the hyperbola in the cases given below:

Foci (± 2, 0), Eccentricity = `3/2`


Find the equation of the hyperbola in the cases given below:

Centre (2, 1), one of the foci (8, 1) and corresponding directrix x = 4


Find the equation of the hyperbola in the cases given below:

Passing through (5, – 2) and length of the transverse axis along x-axis and of length 8 units


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 = – 8x


Prove that the length of the latus rectum of the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 is `(2"b"^2)/"a"`


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(x + 1)^2/100 + (y - 2)^2/64` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(y - 2)^3/25 + (x + 1)^2/16` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

9x2 – y2 – 36x – 6y + 18 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×