Advertisements
Advertisements
प्रश्न
The average variable cost of the monthly output of x tonnes of a firm producing a valuable metal is ₹ `1/5`x2 – 6x + 100. Show that the average variable cost curve is a parabola. Also, find the output and the average cost at the vertex of the parabola.
उत्तर
Let output be x and average variable cost = y
y = `1/5`x2 – 6x + 100
⇒ 5y = x2 – 30x + 500
⇒ x2 – 30x + 225 = 5y – 500 + 225
⇒ (x – 15)2 = 5y – 275
⇒ (x – 15)2 = 5(y – 55) which is of the form X2 = 4`(5/4)`Y
∴ Y average variable cost curve is a parabola
Vertex (0, 0)
x – 15 = 0; y – 55 = 0
x = 15; y = 55
At the vertex, output is 15 tonnes and average cost is ₹ 55.
APPEARS IN
संबंधित प्रश्न
Find the equation of the parabola whose focus is the point F(-1, -2) and the directrix is the line 4x – 3y + 2 = 0.
Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola
x2 = - 16y
The profit ₹ y accumulated in thousand in x months is given by y = -x2 + 10x – 15. Find the best time to end the project.
The eccentricity of the parabola is:
Find the equation of the parabola in the cases given below:
Focus (4, 0) and directrix x = – 4
Find the equation of the hyperbola in the cases given below:
Passing through (5, – 2) and length of the transverse axis along x-axis and of length 8 units
Find the vertex, focus, equation of directrix and length of the latus rectum of the following:
y2 = 16x
Find the vertex, focus, equation of directrix and length of the latus rectum of the following:
y2 – 4y – 8x + 12 = 0
Identify the type of conic and find centre, foci, vertices, and directrices of the following:
`x^2/3 + y^2/10` = 1
Prove that the length of the latus rectum of the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 is `(2"b"^2)/"a"`