English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Find the equation of the hyperbola in the cases given below: Centre (2, 1), one of the foci (8, 1) and corresponding directrix x = 4 - Mathematics

Advertisements
Advertisements

Question

Find the equation of the hyperbola in the cases given below:

Centre (2, 1), one of the foci (8, 1) and corresponding directrix x = 4

Sum

Solution

Distance CS = ae = 6 .......(1)

Directrix  `"a"/x` = 4  .......(2)

(1) × (2)

⇒ ae × `"a"/"e"` = 24

a2 = 24

∴ c = ae = 6

b2 = c2 – a2

= 36 – 24 = 12

The transverse axis is parallel to x-axis

∴ `(x - "h")^2/"a"^2 - (y - "k")^2/"b"^2` = 1(h, k) = (2, 1)

`(x - 2)^2/24 - (y - 1)^2/12` = 1

shaalaa.com
Conics
  Is there an error in this question or solution?
Chapter 5: Two Dimensional Analytical Geometry-II - Exercise 5.2 [Page 196]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 5 Two Dimensional Analytical Geometry-II
Exercise 5.2 | Q 3. (ii) | Page 196

RELATED QUESTIONS

The parabola y2 = kx passes through the point (4, -2). Find its latus rectum and focus.


Find the vertex, focus, axis, directrix, and the length of the latus rectum of the parabola y2 – 8y – 8x + 24 = 0.


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

y2 = 20x


Find the co-ordinates of the focus, vertex, equation of the directrix, axis and the length of latus rectum of the parabola

x2 = - 16y


The profit ₹ y accumulated in thousand in x months is given by y = -x2 + 10x – 15. Find the best time to end the project.


Find the equation of the parabola which is symmetrical about x-axis and passing through (–2, –3).


The focus of the parabola x2 = 16y is:


Find the equation of the ellipse in the cases given below:

Foci (0, ±4) and end points of major axis are (0, ±5)


Find the equation of the ellipse in the cases given below:

Length of latus rectum 4, distance between foci `4sqrt(2)`, centre (0, 0) and major axis as y-axis


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

y2 = 16x


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

x2 = 24y


Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

x2 – 2x + 8y + 17 = 0


Prove that the length of the latus rectum of the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 is `(2"b"^2)/"a"`


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

`(y - 2)^3/25 + (x + 1)^2/16` = 1


Identify the type of conic and find centre, foci, vertices, and directrices of the following:

9x2 – y2 – 36x – 6y + 18 = 0


Choose the correct alternative:

The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is


Choose the correct alternative:

If P(x, y) be any point on 16x2 + 25y2 = 400 with foci F(3, 0) then PF1 + PF2 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×