Advertisements
Advertisements
प्रश्न
Find the rank of the following matrices
`((3, 1, -5, -1),(1, -2, 1, -5),(1, 5, -7, 2))`
उत्तर
Let A = `((3, 1, -5, -1),(1, -2, 1, -5),(1, 5, -7, 2))`
Order of A is 3 × 4
∴ p(A) ≤ 3
Consider the third order minors,
`|(3, 1, -5),(1, -2, 1),(1, 5, -7)|` = 3(14 – 5) – 1(– 7 – 1) – 5( + 2)
= 3(9) – (– 8) – 5(7)
= 27 + 8 – 35
= 0
`|(3, 1, -1),(1, -2, -5),(1, 5, 2)|` = 3 + (– 4 + 25) – 1(2 + 5) – 1(5 + 2)
3(21) – (7) – (7)
= 63 – 14
= 49 ≠ 0
`|(3, -5, -1),(1, 1, -5),(1, -7, 2)|` = 3(2 – 35) + 5(2 + 5) – 1(– 7 – 1)
= 3(– 33) + 5(7) – (– 8)
= – 99 + 3 + 8
= – 56 ≠ 0
`|(1, -5, -1),(-2, 1, -5),(5, -7, 2)|` = 1(2 – 35) + 5(– 4 + 5) – 1(14 – 5)
= – 33 + 5(21) – 9
= – 42 + 105
= 63 ≠ 0
Since there are 3 minors which do not vanish, p(A) = 3
We can also find the rank by using echelon form of matrix A.
A = `((3, 1, -5, -1),(1, -2, 1, -5),(1, 5, -7, 2))`
`˜ ((1, -2, 1, -5),(3, 1, -5, -1),(1, 5, -7, 2))` `{:"R"_1 ↔ "R"_2:}`
`˜ ((1, -2, 1, -5),(.0, 7, -8, 14),(0, 7, -8, 7))` `{:("R"_2 -> "R"_2 - 3"R"_1),("R"_3 -> "R"_3 - "R"_1):}`
`˜ ((1, -2, 1, -5),(0, 7, -8, 14),(0, 0, 0,-7))` `{:"R"_3 -> "R"_3 - "R"_1:}`
The number of non-zero rows is 3
∴ p(A) = 3
APPEARS IN
संबंधित प्रश्न
Find the rank of the following matrices
`((2, -1, 1),(3, 1, -5),(1, 1, 1))`
Show that the equations 5x + 3y + 7z = 4, 3x + 26y + 2z = 9, 7x + 2y + 10z = 5 are consistent and solve them by rank method
For what values of the parameter λ, will the following equations fail to have unique solution: 3x – y + λz = 1, 2x + y + z = 2, x + 2y – λz = – 1
Choose the correct alternative:
If A = `((2, 0),(0, 8))`, then p(A) is
Choose the correct alternative:
If A = `((1),(2),(3))` then the rank of AAT is
Choose the correct alternative:
If the rank of the matrix `[(lambda, -1, 0),(0, lambda, -1),(-1, 0, lambda)]` is 2, then λ is
Choose the correct alternative:
Which of the following is not an elementary transformation?
Choose the correct alternative:
If p(A) ≠ p(A, B) =, then the system is
Choose the correct alternative:
The system of linear equations x = y + z = 2, 2x + y – z = 3, 3x + 2y + k = 4 has unique solution, if k is not equal to
Choose the correct alternative:
Rank of a null matrix is