Advertisements
Advertisements
प्रश्न
For what values of the parameter λ, will the following equations fail to have unique solution: 3x – y + λz = 1, 2x + y + z = 2, x + 2y – λz = – 1
उत्तर
3x – y + λz = 1
2x + y + z = 2
x + 2y – λz = – 1
The matrix equation corresponding to the given system is
`[(3, -1, lambda),(2, 1, 1),(1, 2, -lambda)] [(x),(y),(z)] = [(1),(2),(-1)]`
A X = B
Augmented Matrix [A, B] |
Elementary Transformation |
`[(3, -1, lambda, 1),(2, 1, 1, 2),(1, 2, -lambda, -1)]` | |
`∼[(1, 2, -lambda, -1),(2, 1, 1, 2),(3, -1, lambda, 1)]` | `{:"R"_1 ↔ "R"_3:}` |
`∼[(1, 2, -lambda, -1),(0, -3, 1 + 2lambda, 4),(0, -7, 4lambda, 4)]` | `{:("R"_2 -> "R"_2 - 2"R"_1),("R"_3 -> "R"_3 - 3"R"_1):}` |
`∼[(1, 2, -lambda, -1),(0, -3, 1 + 2lambda, 4),(0, -1, -2, -4)]` | `{:"R"_3 -> "R"_3 - 2"R"_2:}` |
`∼[(1, 2, -lambda, -1),(0, -1, -2, -4),(0, -3, 1 + 2lambda, 4)]` | `{:"R"_2 ↔ "R"_3:}` |
`∼[(1, 2, -lambda, -1),(0, -1, -2, -4),(0, 0, 7 + 2lambda, 16)]` | `{:"R"_3 -> "R"_3 - 3"R"_2:}` |
If the equations fail to have unique solution.
ρ(A) ≠ ρ(A, B)
ρ(A, B) = 3
ρ(A) ≠ 3
Therefore 7 + 2λ = 0
2λ = – 7 and λ = `(-7)/2`
APPEARS IN
संबंधित प्रश्न
Find the rank of the following matrices
`((1, -1),(3, -6))`
Find the rank of the following matrices
`((2, -1, 1),(3, 1, -5),(1, 1, 1))`
Find the rank of the following matrices
`((3, 1, -5, -1),(1, -2, 1, -5),(1, 5, -7, 2))`
Solve the following system of equations by rank method
x + y + z = 9, 2x + 5y + 7z = 52, 2x – y – z = 0
Choose the correct alternative:
If A = `((2, 0),(0, 8))`, then p(A) is
Choose the correct alternative:
The rank of the unit matrix of order n is
Choose the correct alternative:
The rank of the diagonal matrix `[(1, , , , ,),(, 2, , , ,),(, , -3, , ,),(, , , 0, ,),(, , , , 0,),(, , , , ,0)]`
Choose the correct alternative:
Which of the following is not an elementary transformation?
Choose the correct alternative:
If p(A) ≠ p(A, B) =, then the system is
Find k if the equations x + y + z = 1, 3x – y – z = 4, x + 5y + 5z = k are inconsistent