Advertisements
Advertisements
Question
For what values of the parameter λ, will the following equations fail to have unique solution: 3x – y + λz = 1, 2x + y + z = 2, x + 2y – λz = – 1
Solution
3x – y + λz = 1
2x + y + z = 2
x + 2y – λz = – 1
The matrix equation corresponding to the given system is
`[(3, -1, lambda),(2, 1, 1),(1, 2, -lambda)] [(x),(y),(z)] = [(1),(2),(-1)]`
A X = B
Augmented Matrix [A, B] |
Elementary Transformation |
`[(3, -1, lambda, 1),(2, 1, 1, 2),(1, 2, -lambda, -1)]` | |
`∼[(1, 2, -lambda, -1),(2, 1, 1, 2),(3, -1, lambda, 1)]` | `{:"R"_1 ↔ "R"_3:}` |
`∼[(1, 2, -lambda, -1),(0, -3, 1 + 2lambda, 4),(0, -7, 4lambda, 4)]` | `{:("R"_2 -> "R"_2 - 2"R"_1),("R"_3 -> "R"_3 - 3"R"_1):}` |
`∼[(1, 2, -lambda, -1),(0, -3, 1 + 2lambda, 4),(0, -1, -2, -4)]` | `{:"R"_3 -> "R"_3 - 2"R"_2:}` |
`∼[(1, 2, -lambda, -1),(0, -1, -2, -4),(0, -3, 1 + 2lambda, 4)]` | `{:"R"_2 ↔ "R"_3:}` |
`∼[(1, 2, -lambda, -1),(0, -1, -2, -4),(0, 0, 7 + 2lambda, 16)]` | `{:"R"_3 -> "R"_3 - 3"R"_2:}` |
If the equations fail to have unique solution.
ρ(A) ≠ ρ(A, B)
ρ(A, B) = 3
ρ(A) ≠ 3
Therefore 7 + 2λ = 0
2λ = – 7 and λ = `(-7)/2`
APPEARS IN
RELATED QUESTIONS
Find the rank of the following matrices
`((1, -1),(3, -6))`
Find the rank of the following matrices
`((1, 4),(2, 8))`
Find the rank of the following matrices
`((1, 2, -1, 3),(2, 4, 1, -2),(3, 6, 3, -7))`
Find the rank of the following matrices
`((3, 1, -5, -1),(1, -2, 1, -5),(1, 5, -7, 2))`
If A = `((1, 1, -1),(2, -3, 4),(3, -2, 3))` and B = `((1, -2, 3),(-2, 4, -6),(5, 1, -1))`, then find the rank of AB and the rank of BA.
Show that the equations 5x + 3y + 7z = 4, 3x + 26y + 2z = 9, 7x + 2y + 10z = 5 are consistent and solve them by rank method
Choose the correct alternative:
The rank of m n × matrix whose elements are unity is
Choose the correct alternative:
If A = `((2, 0),(0, 8))`, then p(A) is
Choose the correct alternative:
The system of equations 4x + 6y = 5, 6x + 9y = 7 has
Choose the correct alternative:
If `|"A"_("n" xx "n")|` = 3 and |adj A| = 243 then the value n is