Advertisements
Advertisements
प्रश्न
For what values of the parameter λ, will the following equations fail to have unique solution: 3x – y + λz = 1, 2x + y + z = 2, x + 2y – λz = – 1
उत्तर
3x – y + λz = 1
2x + y + z = 2
x + 2y – λz = – 1
The matrix equation corresponding to the given system is
`[(3, -1, lambda),(2, 1, 1),(1, 2, -lambda)] [(x),(y),(z)] = [(1),(2),(-1)]`
A X = B
Augmented Matrix [A, B] |
Elementary Transformation |
`[(3, -1, lambda, 1),(2, 1, 1, 2),(1, 2, -lambda, -1)]` | |
`∼[(1, 2, -lambda, -1),(2, 1, 1, 2),(3, -1, lambda, 1)]` | `{:"R"_1 ↔ "R"_3:}` |
`∼[(1, 2, -lambda, -1),(0, -3, 1 + 2lambda, 4),(0, -7, 4lambda, 4)]` | `{:("R"_2 -> "R"_2 - 2"R"_1),("R"_3 -> "R"_3 - 3"R"_1):}` |
`∼[(1, 2, -lambda, -1),(0, -3, 1 + 2lambda, 4),(0, -1, -2, -4)]` | `{:"R"_3 -> "R"_3 - 2"R"_2:}` |
`∼[(1, 2, -lambda, -1),(0, -1, -2, -4),(0, -3, 1 + 2lambda, 4)]` | `{:"R"_2 ↔ "R"_3:}` |
`∼[(1, 2, -lambda, -1),(0, -1, -2, -4),(0, 0, 7 + 2lambda, 16)]` | `{:"R"_3 -> "R"_3 - 3"R"_2:}` |
If the equations fail to have unique solution.
ρ(A) ≠ ρ(A, B)
ρ(A, B) = 3
ρ(A) ≠ 3
Therefore 7 + 2λ = 0
2λ = – 7 and λ = `(-7)/2`
APPEARS IN
संबंधित प्रश्न
If A = `((1, 1, -1),(2, -3, 4),(3, -2, 3))` and B = `((1, -2, 3),(-2, 4, -6),(5, 1, -1))`, then find the rank of AB and the rank of BA.
Solve the following system of equations by rank method
x + y + z = 9, 2x + 5y + 7z = 52, 2x – y – z = 0
Choose the correct alternative:
A = (1, 2, 3), then the rank of AAT is
Choose the correct alternative:
The rank of m n × matrix whose elements are unity is
Choose the correct alternative:
If A = `((1),(2),(3))` then the rank of AAT is
Choose the correct alternative:
If p(A) = p(A, B)= the number of unknowns, then the system is
Choose the correct alternative:
If p(A) ≠ p(A, B) =, then the system is
Choose the correct alternative:
If the number of variables in a non-homogeneous system AX = B is n, then the system possesses a unique solution only when
Choose the correct alternative:
For the system of equations x + 2y + 3z = 1, 2x + y + 3z = 3, 5x + 5y + 9z = 4
Find the rank of the matrix
A = `((-2, 1, 3, 4),(0, 1, 1, 2),(1, 3, 4, 7))`