Advertisements
Advertisements
प्रश्न
Find the separate equation of the following pair of straight lines
6(x – 1)2 + 5(x – 1)(y – 2) – 4(y – 3)2 = 0
उत्तर
6(x – 1)2 + 5( x – 1)(y – 2) – 4(y – 3)2 = 0
Let x = x – 1 and y = y – 2
∴ The given equation becomes
6x2 + 5xy – 4y2 = 0
6x2 + 8xy – 3xy – 4y2 = 0
2x(3x + 4y) – Y(3x + 4y) = 0
(2x – y)(3x + 4y) = 0
2x – y = 0 and 3x + 4y = 0
Substituting for x and y, we have
2x – y = 0
⇒ 2(x – 1) – (y – 2) = 0
⇒ 2x – 2 – y + 2 = 0
⇒ 2x – y = 0
3X + 4Y = 0
⇒ 3(x – 1) + 4( y – 2 ) = 0
⇒ 3x – 3 + 4y – 8 = 0
⇒ 3x + 4y – 11 = 0
∴ The separate equations are
2x – y = 0 and 3x + 4y – 11 = 0
APPEARS IN
संबंधित प्रश्न
If the equation ax2 + 5xy – 6y2 + 12x + 5y + c = 0 represents a pair of perpendicular straight lines, find a and c.
Show that the pair of straight lines 4x2 + 12xy + 9y2 – 6x – 9y + 2 = 0 represents two parallel straight lines and also find the separate equations of the straight lines.
If m1 and m2 are the slopes of the pair of lines given by ax2 + 2hxy + by2 = 0, then the value of m1 + m2 is:
The angle between the pair of straight lines x2 – 7xy + 4y2 = 0 is:
If the lines 2x – 3y – 5 = 0 and 3x – 4y – 7 = 0 are the diameters of a circle, then its centre is:
Show that 2x2 + 3xy − 2y2 + 3x + y + 1 = 0 represents a pair of perpendicular lines
Show that the equation 2x2 − xy − 3y2 − 6x + 19y − 20 = 0 represents a pair of intersecting lines. Show further that the angle between them is tan−1(5)
Find the separate equation of the following pair of straight lines
2x2 – xy – 3y2 – 6x + 19y – 20 = 0
The slope of one of the straight lines ax2 + 2hxy + by2 = 0 is twice that of the other, show that 8h2 = 9ab
The slope of one of the straight lines ax2 + 2hxy + by2 = 0 is three times the other, show that 3h2 = 4ab
Show that the equation 9x2 – 24xy + 16y2 – 12x + 16y – 12 = 0 represents a pair of parallel lines. Find the distance between them
Choose the correct alternative:
Equation of the straight line that forms an isosceles triangle with coordinate axes in the I-quadrant with perimeter `4 + 2sqrt(2)` is
Choose the correct alternative:
The coordinates of the four vertices of a quadrilateral are (−2, 4), (−1, 2), (1, 2) and (2, 4) taken in order. The equation of the line passing through the vertex (−1, 2) and dividing the quadrilateral in the equal areas is
Choose the correct alternative:
If the equation of the base opposite to the vertex (2, 3) of an equilateral triangle is x + y = 2, then the length of a side is
Choose the correct alternative:
The image of the point (2, 3) in the line y = −x is
Choose the correct alternative:
The length of ⊥ from the origin to the line `x/3 - y/4` = 1 is
The distance between the two points A and A' which lie on y = 2 such that both the line segments AB and A'B (where B is the point (2, 3)) subtend angle `π/4` at the origin, is equal to ______.
If `"z"^2/(("z" - 1))` is always real, then z, can lie on ______.