Advertisements
Advertisements
Question
Find the separate equation of the following pair of straight lines
6(x – 1)2 + 5(x – 1)(y – 2) – 4(y – 3)2 = 0
Solution
6(x – 1)2 + 5( x – 1)(y – 2) – 4(y – 3)2 = 0
Let x = x – 1 and y = y – 2
∴ The given equation becomes
6x2 + 5xy – 4y2 = 0
6x2 + 8xy – 3xy – 4y2 = 0
2x(3x + 4y) – Y(3x + 4y) = 0
(2x – y)(3x + 4y) = 0
2x – y = 0 and 3x + 4y = 0
Substituting for x and y, we have
2x – y = 0
⇒ 2(x – 1) – (y – 2) = 0
⇒ 2x – 2 – y + 2 = 0
⇒ 2x – y = 0
3X + 4Y = 0
⇒ 3(x – 1) + 4( y – 2 ) = 0
⇒ 3x – 3 + 4y – 8 = 0
⇒ 3x + 4y – 11 = 0
∴ The separate equations are
2x – y = 0 and 3x + 4y – 11 = 0
APPEARS IN
RELATED QUESTIONS
Find the angle between the pair of straight lines 3x2 – 5xy – 2y2 + 17x + y + 10 = 0.
If m1 and m2 are the slopes of the pair of lines given by ax2 + 2hxy + by2 = 0, then the value of m1 + m2 is:
The angle between the pair of straight lines x2 – 7xy + 4y2 = 0 is:
Combined equation of co-ordinate axes is:
ax2 + 4xy + 2y2 = 0 represents a pair of parallel lines then ‘a’ is:
Show that 4x2 + 4xy + y2 − 6x − 3y − 4 = 0 represents a pair of parallel lines
Show that the equation 2x2 − xy − 3y2 − 6x + 19y − 20 = 0 represents a pair of intersecting lines. Show further that the angle between them is tan−1(5)
Find the separate equation of the following pair of straight lines
2x2 – xy – 3y2 – 6x + 19y – 20 = 0
The slope of one of the straight lines ax2 + 2hxy + by2 = 0 is twice that of the other, show that 8h2 = 9ab
The slope of one of the straight lines ax2 + 2hxy + by2 = 0 is three times the other, show that 3h2 = 4ab
Find the value of k, if the following equation represents a pair of straight lines. Further, find whether these lines are parallel or intersecting, 12x2 + 7xy − 12y2 − x + 7y + k = 0
Show that the equation 9x2 – 24xy + 16y2 – 12x + 16y – 12 = 0 represents a pair of parallel lines. Find the distance between them
If the pair of straight lines x2 – 2kxy – y2 = 0 bisect the angle between the pair of straight lines x2 – 2lxy – y2 = 0, Show that the later pair also bisects the angle between the former
Choose the correct alternative:
If one of the lines given by 6x2 – xy – 4cy2 = 0 is 3x + 4y = 0, then c equals to ______.
The distance between the two points A and A' which lie on y = 2 such that both the line segments AB and A'B (where B is the point (2, 3)) subtend angle `π/4` at the origin, is equal to ______.