Advertisements
Advertisements
Question
The slope of one of the straight lines ax2 + 2hxy + by2 = 0 is twice that of the other, show that 8h2 = 9ab
Solution
The equation of the given straight line is
ax2 + 2hxy + by2 = 0 .......(1)
Given that the slopes of the straight lines are m and 2m
∴ m + 2m = `- (2"h")/"b"`
(m)(2m) = `"a"/"b"`
3 m = `- (2"h")/"b"`
and
2m2 = `"a"/"b"`
m = `- (2"h")/(3"b")`
⇒ `2( - (2"h")/(3"b"))^2 = "a"/"b"`
⇒ `2((4"h"^2)/(9"b"^2)) = "a"/"b"`
⇒ 8h2 = 9ab
APPEARS IN
RELATED QUESTIONS
Show that the pair of straight lines 4x2 + 12xy + 9y2 – 6x – 9y + 2 = 0 represents two parallel straight lines and also find the separate equations of the straight lines.
The angle between the pair of straight lines x2 – 7xy + 4y2 = 0 is:
If the lines 2x – 3y – 5 = 0 and 3x – 4y – 7 = 0 are the diameters of a circle, then its centre is:
Show that 2x2 + 3xy − 2y2 + 3x + y + 1 = 0 represents a pair of perpendicular lines
Find the equation of the pair of straight lines passing through the point (1, 3) and perpendicular to the lines 2x − 3y + 1 = 0 and 5x + y − 3 = 0
The slope of one of the straight lines ax2 + 2hxy + by2 = 0 is three times the other, show that 3h2 = 4ab
Find p and q, if the following equation represents a pair of perpendicular lines
6x2 + 5xy – py2 + 7x + qy – 5 = 0
For what values of k does the equation 12x2 + 2kxy + 2y2 +11x – 5y + 2 = 0 represent two straight lines
Prove that one of the straight lines given by ax2 + 2hxy + by2 = 0 will bisect the angle between the coordinate axes if (a + b)2 = 4h2
Prove that the straight lines joining the origin to the points of intersection of 3x2 + 5xy – 3y2 + 2x + 3y = 0 and 3x – 2y – 1 = 0 are at right angles
Choose the correct alternative:
The coordinates of the four vertices of a quadrilateral are (−2, 4), (−1, 2), (1, 2) and (2, 4) taken in order. The equation of the line passing through the vertex (−1, 2) and dividing the quadrilateral in the equal areas is
Choose the correct alternative:
The area of the triangle formed by the lines x2 – 4y2 = 0 and x = a is
Choose the correct alternative:
If one of the lines given by 6x2 – xy – 4cy2 = 0 is 3x + 4y = 0, then c equals to ______.
Choose the correct alternative:
One of the equation of the lines given by x2 + 2xy cot θ – y2 = 0 is
The distance between the two points A and A' which lie on y = 2 such that both the line segments AB and A'B (where B is the point (2, 3)) subtend angle `π/4` at the origin, is equal to ______.
If `"z"^2/(("z" - 1))` is always real, then z, can lie on ______.
The pair of lines represented by 3ax2 + 5xy + (a2 – 2)y2 = 0 are perpendicular to each other for ______.