Advertisements
Advertisements
Question
Find p and q, if the following equation represents a pair of perpendicular lines
6x2 + 5xy – py2 + 7x + qy – 5 = 0
Solution
The equation of the given pair of straight lines is
6x2 + 5xy – py2 + 7x + qy – 5 = 0 ......(1)
Given that equation (1) represents a pair of perpendicular straight lines.
∴ Coefficient of x2 + coefficient of y2 = 0
6 – p = 0
⇒ p = 6
6x2 + 5xy – 6y2 = 6x2 + 9xy – 4xy – 6y2
= 3x(2x + 3y) – 2y (2x + 3y)
= (2x + 3y)(3x – 2y)
Let the separate equation of the straight lines be
2x + 3y + 1 = 0 and 3x – 2y + m = 0
6x2 + 5xy – 6y2 + 7x + qy – 5
= (2x + 3y + 1)(3x – 2y + m)
Comparing the coefficients of x, y and constant terms on both sides
2m + 3l = 7 ......(2)
3m – 2l = q ......(3)
lm = – 5 ......(4)
Equation (4)
⇒ l = 1
m = – 5
or
l = – 1
m = 5
When l = 1
m = – 5 ,
Equation (2) does not satisfy.
∴ l = – 1
m = 5
Substituting in equation (3)
3(5) – 2(–1) = q
⇒ q = 17
∴ The required values are p = 6, q = 17
APPEARS IN
RELATED QUESTIONS
If the equation ax2 + 5xy – 6y2 + 12x + 5y + c = 0 represents a pair of perpendicular straight lines, find a and c.
Find the angle between the pair of straight lines 3x2 – 5xy – 2y2 + 17x + y + 10 = 0.
If m1 and m2 are the slopes of the pair of lines given by ax2 + 2hxy + by2 = 0, then the value of m1 + m2 is:
ax2 + 4xy + 2y2 = 0 represents a pair of parallel lines then ‘a’ is:
Show that 4x2 + 4xy + y2 − 6x − 3y − 4 = 0 represents a pair of parallel lines
Show that 2x2 + 3xy − 2y2 + 3x + y + 1 = 0 represents a pair of perpendicular lines
Find the separate equation of the following pair of straight lines
3x2 + 2xy – y2 = 0
Find the value of k, if the following equation represents a pair of straight lines. Further, find whether these lines are parallel or intersecting, 12x2 + 7xy − 12y2 − x + 7y + k = 0
Show that the equation 9x2 – 24xy + 16y2 – 12x + 16y – 12 = 0 represents a pair of parallel lines. Find the distance between them
Choose the correct alternative:
If the equation of the base opposite to the vertex (2, 3) of an equilateral triangle is x + y = 2, then the length of a side is
Choose the correct alternative:
The image of the point (2, 3) in the line y = −x is
Choose the correct alternative:
If one of the lines given by 6x2 – xy – 4cy2 = 0 is 3x + 4y = 0, then c equals to ______.
Choose the correct alternative:
One of the equation of the lines given by x2 + 2xy cot θ – y2 = 0 is
The distance between the two points A and A' which lie on y = 2 such that both the line segments AB and A'B (where B is the point (2, 3)) subtend angle `π/4` at the origin, is equal to ______.
Let the equation of the pair of lines, y = px and y = qx, can be written as (y – px) (y – qx) = 0. Then the equation of the pair of the angle bisectors of the lines x2 – 4xy – 5y2 = 0 is ______.