Advertisements
Advertisements
Question
If the equation ax2 + 5xy – 6y2 + 12x + 5y + c = 0 represents a pair of perpendicular straight lines, find a and c.
Solution
Comparing ax2 + 5xy – 6y2 + 12x + 5y + c = 0 with ax2 + 2hxy + by2 + 2gx + 2fy + c = 0
We get a = a, 2h = 5, (or) h = `5/2`, b = -6, 2g = 12 (or) g = 6, 2f = 5 (or) f = 52, c = c
Condition for pair of straight lines to be perpendicular is a + b = 0
a + (-6) = 0
a = 6
Next to find c. Condition for the given equation to represent a pair of straight lines is
`|(a,h,g),(h,b,f),(g,f,c)|` = 0
`|(6,5/2,6),(5/2,-6,5/2),(6,5/2,c)|`= 0
`|(0,0,6-c),(5/2,-6,5/2),(6,5/2,c)|` = 0
R1 → R1 – R3
Expanding along first row we get 0 – 0 + (6 – c) `[25/4 + 36] = 0`
(6-c) `[25/4 + 36]` = 0
6 – c = 0
6 = c (or) c = 6
APPEARS IN
RELATED QUESTIONS
If the lines 2x – 3y – 5 = 0 and 3x – 4y – 7 = 0 are the diameters of a circle, then its centre is:
Show that 2x2 + 3xy − 2y2 + 3x + y + 1 = 0 represents a pair of perpendicular lines
Find the equation of the pair of straight lines passing through the point (1, 3) and perpendicular to the lines 2x − 3y + 1 = 0 and 5x + y − 3 = 0
The slope of one of the straight lines ax2 + 2hxy + by2 = 0 is twice that of the other, show that 8h2 = 9ab
Find p and q, if the following equation represents a pair of perpendicular lines
6x2 + 5xy – py2 + 7x + qy – 5 = 0
Show that the equation 9x2 – 24xy + 16y2 – 12x + 16y – 12 = 0 represents a pair of parallel lines. Find the distance between them
Prove that the straight lines joining the origin to the points of intersection of 3x2 + 5xy – 3y2 + 2x + 3y = 0 and 3x – 2y – 1 = 0 are at right angles
Choose the correct alternative:
The image of the point (2, 3) in the line y = −x is
If `"z"^2/(("z" - 1))` is always real, then z, can lie on ______.
Let the equation of the pair of lines, y = px and y = qx, can be written as (y – px) (y – qx) = 0. Then the equation of the pair of the angle bisectors of the lines x2 – 4xy – 5y2 = 0 is ______.