Advertisements
Advertisements
Question
Show that the equation 12x2 – 10xy + 2y2 + 14x – 5y + 2 = 0 represents a pair of straight lines and also find the separate equations of the straight lines.
Solution
Comparing 12x2 – 10xy + 2y2 + 14x – 5y + 2 = 0 with ax2 + 2hxy + by2 + 2gh + 2fy + c = 0
We get a = 12, 2h = -10, (or) h = -5, b = 2, 2g = 14 (or) g = 7, 2f = -5 (or) f = `- 5/2`, c = 2
Condition for the given equation to represent a pair of straight lines is `|(a,h,g),(h,b,f),(g,f,c)|` = 0
`|(a,h,g),(h,b,f),(g,f,c)| = |(12,-5,7),(-5,2,(-5)/2),(7,(-5)/2,2)|`
`= 1/2 xx 1/2 |(12,-5,7),(-10,4,-5),(14,-5,4)|` ....`[("R"_2 -> 2"R"_2),("R"_3 -> 2"R"_3)]`
`= 1/4` [12(16 – 25) + 5(-40 + 70) + 7(50 – 56)]
= `1/4` [12(-9) + 5(30) + 7(-6)]
= `1/4` [-108 + 150 – 42]
= `1/4` [0]
= 0
∴ The given equation represents a pair of straight lines.
Consider 12x2 – 10xy + 2y2 = 2[6x2 – 5xy + y2] = 2[(3x – y)(2x – y)] = (6x – 2y)(2x – y)
Let the separate equations be 6x – 2y + l = 0, 2x – y + m = 0
To find l, m
Let 12x2 – 10xy + 2y2 + 14x – 5y + 2 = (6x – 2y + l) (2x – y + m) ……. (1)
Equating coefficient of y on both sides of (1) we get
2l + 6m = 14 (or) l + 3m = 7 ………… (2)
Equating coefficient of x on both sides of (1) we get
-l – 2m = -5 ……… (3)
(2) + (3) ⇒ m = 2
Using m = 2 in (2) we get
l + 3(2) = 7
l = 7 – 6
l = 1
∴ The separate equations are 6x – 2y + 1 = 0, 2x – y + 2 = 0.
APPEARS IN
RELATED QUESTIONS
Find the angle between the pair of straight lines 3x2 – 5xy – 2y2 + 17x + y + 10 = 0.
ax2 + 4xy + 2y2 = 0 represents a pair of parallel lines then ‘a’ is:
Find the value of k, if the following equation represents a pair of straight lines. Further, find whether these lines are parallel or intersecting, 12x2 + 7xy − 12y2 − x + 7y + k = 0
Show that the equation 9x2 – 24xy + 16y2 – 12x + 16y – 12 = 0 represents a pair of parallel lines. Find the distance between them
Show that the equation 4x2 + 4xy + y2 – 6x – 3y – 4 = 0 represents a pair of parallel lines. Find the distance between them
Choose the correct alternative:
Equation of the straight line that forms an isosceles triangle with coordinate axes in the I-quadrant with perimeter `4 + 2sqrt(2)` is
Choose the correct alternative:
If the equation of the base opposite to the vertex (2, 3) of an equilateral triangle is x + y = 2, then the length of a side is
Choose the correct alternative:
The length of ⊥ from the origin to the line `x/3 - y/4` = 1 is
Choose the correct alternative:
The area of the triangle formed by the lines x2 – 4y2 = 0 and x = a is
The pair of lines represented by 3ax2 + 5xy + (a2 – 2)y2 = 0 are perpendicular to each other for ______.