Advertisements
Advertisements
Question
Show that 4x2 + 4xy + y2 − 6x − 3y − 4 = 0 represents a pair of parallel lines
Solution
The equation of the given pair of straight lines is
4x2 + 4xy + y2 – 6x – 3y – 4 = 0 .......(1)
Compare this equation with the equation
ax2 + 2hxy + by2 + 2gx + 2fy + c = 0 .......(2)
a = 4
2h = 4
b = 1
2g = – 6
2f = – 3
c = – 4
The condition for parallelism is
h2 – ab = 0
22 – (4)(1) = 4 – 4 = 0
∴ The given pair of straight lines represents a pair of parallel straight lines.
APPEARS IN
RELATED QUESTIONS
The angle between the pair of straight lines x2 – 7xy + 4y2 = 0 is:
Combined equation of co-ordinate axes is:
ax2 + 4xy + 2y2 = 0 represents a pair of parallel lines then ‘a’ is:
Find the combined equation of the straight lines whose separate equations are x − 2y − 3 = 0 and x + y + 5 = 0
Show that the equation 2x2 − xy − 3y2 − 6x + 19y − 20 = 0 represents a pair of intersecting lines. Show further that the angle between them is tan−1(5)
Prove that the equation to the straight lines through the origin, each of which makes an angle α with the straight line y = x is x2 – 2xy sec 2α + y2 = 0
Find the separate equation of the following pair of straight lines
3x2 + 2xy – y2 = 0
Find the separate equation of the following pair of straight lines
6(x – 1)2 + 5(x – 1)(y – 2) – 4(y – 3)2 = 0
The slope of one of the straight lines ax2 + 2hxy + by2 = 0 is three times the other, show that 3h2 = 4ab
Find the value of k, if the following equation represents a pair of straight lines. Further, find whether these lines are parallel or intersecting, 12x2 + 7xy − 12y2 − x + 7y + k = 0
Prove that one of the straight lines given by ax2 + 2hxy + by2 = 0 will bisect the angle between the coordinate axes if (a + b)2 = 4h2
Prove that the straight lines joining the origin to the points of intersection of 3x2 + 5xy – 3y2 + 2x + 3y = 0 and 3x – 2y – 1 = 0 are at right angles
Choose the correct alternative:
Equation of the straight line that forms an isosceles triangle with coordinate axes in the I-quadrant with perimeter `4 + 2sqrt(2)` is
Choose the correct alternative:
The image of the point (2, 3) in the line y = −x is
Choose the correct alternative:
The length of ⊥ from the origin to the line `x/3 - y/4` = 1 is
Choose the correct alternative:
The area of the triangle formed by the lines x2 – 4y2 = 0 and x = a is
Choose the correct alternative:
If one of the lines given by 6x2 – xy – 4cy2 = 0 is 3x + 4y = 0, then c equals to ______.