Advertisements
Advertisements
Question
Prove that one of the straight lines given by ax2 + 2hxy + by2 = 0 will bisect the angle between the coordinate axes if (a + b)2 = 4h2
Solution
The equation of the given pair of straight lines is
ax2 + 2hxy + by2 = 0 ………(1)
Let m1 and m2, be the slopes of the separate straight lines.
Given that one of the straight lines of (1) bisects the angle between the coordinate axes.
∴ The angle made by that line with x-axis 45°.
Slope of that line m1 = tan 45°
m1 = 1
m1 = m2 = `- (2"h")/"b"`, m1m2 = `"a"/"b"`
1 + m2 = `- (2"h")/"b"` (1) m2 = `"a"/"b"`
1 + m2 = `- (2"h")/"b"` m2 = `"a"/"b"`
`1 + "a"/"b" = - (2"h")/"b"`
`("b" + "a")/"b" - (2"h")/"b"`
a + b = – 2h
Squaring on both sides
(a + b)2 = (– 2h)2
(a + b)2 = 4h2
APPEARS IN
RELATED QUESTIONS
The angle between the pair of straight lines x2 – 7xy + 4y2 = 0 is:
ax2 + 4xy + 2y2 = 0 represents a pair of parallel lines then ‘a’ is:
Show that 4x2 + 4xy + y2 − 6x − 3y − 4 = 0 represents a pair of parallel lines
Show that the equation 2x2 − xy − 3y2 − 6x + 19y − 20 = 0 represents a pair of intersecting lines. Show further that the angle between them is tan−1(5)
Prove that the equation to the straight lines through the origin, each of which makes an angle α with the straight line y = x is x2 – 2xy sec 2α + y2 = 0
Find the equation of the pair of straight lines passing through the point (1, 3) and perpendicular to the lines 2x − 3y + 1 = 0 and 5x + y − 3 = 0
Find the separate equation of the following pair of straight lines
6(x – 1)2 + 5(x – 1)(y – 2) – 4(y – 3)2 = 0
Find the separate equation of the following pair of straight lines
2x2 – xy – 3y2 – 6x + 19y – 20 = 0
A ∆OPQ is formed by the pair of straight lines x2 – 4xy + y2 = 0 and the line PQ. The equation of PQ is x + y – 2 = 0, Find the equation of the median of the triangle ∆ OPQ drawn from the origin O
Find p and q, if the following equation represents a pair of perpendicular lines
6x2 + 5xy – py2 + 7x + qy – 5 = 0
For what values of k does the equation 12x2 + 2kxy + 2y2 +11x – 5y + 2 = 0 represent two straight lines
Show that the equation 4x2 + 4xy + y2 – 6x – 3y – 4 = 0 represents a pair of parallel lines. Find the distance between them
If the pair of straight lines x2 – 2kxy – y2 = 0 bisect the angle between the pair of straight lines x2 – 2lxy – y2 = 0, Show that the later pair also bisects the angle between the former
Choose the correct alternative:
The coordinates of the four vertices of a quadrilateral are (−2, 4), (−1, 2), (1, 2) and (2, 4) taken in order. The equation of the line passing through the vertex (−1, 2) and dividing the quadrilateral in the equal areas is
Choose the correct alternative:
The length of ⊥ from the origin to the line `x/3 - y/4` = 1 is
Choose the correct alternative:
The area of the triangle formed by the lines x2 – 4y2 = 0 and x = a is
Choose the correct alternative:
If one of the lines given by 6x2 – xy – 4cy2 = 0 is 3x + 4y = 0, then c equals to ______.
If `"z"^2/(("z" - 1))` is always real, then z, can lie on ______.
The pair of lines represented by 3ax2 + 5xy + (a2 – 2)y2 = 0 are perpendicular to each other for ______.