Advertisements
Advertisements
Question
Find the separate equation of the following pair of straight lines
2x2 – xy – 3y2 – 6x + 19y – 20 = 0
Solution
2x2 – xy – 3y2 – 6x + 19y – 20 = 0
Factorising 2x2 – xy – 3y2 we get
2x2 – xy – 3y2 = 2x2 + 2xy – 3xy – 3y2
= 2x(x + y) – 3y(x + y) = (2x – 3y)(x + y)
∴ 2x2 – xy – 3y2 – 6x + 19y – 20 = (2x – 3y + l)(x + y + m)
Equating coefficient of x 2m + l = -6 .......(1)
Equating coefficient of y – 3m + l = 19 .......(2)
Constant term – 20 = lm
Solving (1) and (2) we get l = 4 and m = – 5 where lm = – 20.
So the separate equations are 2x – 3y + 4 = 0 and x + y – 5 = 0
APPEARS IN
RELATED QUESTIONS
Show that the equation 12x2 – 10xy + 2y2 + 14x – 5y + 2 = 0 represents a pair of straight lines and also find the separate equations of the straight lines.
Find the angle between the pair of straight lines 3x2 – 5xy – 2y2 + 17x + y + 10 = 0.
The angle between the pair of straight lines x2 – 7xy + 4y2 = 0 is:
If the lines 2x – 3y – 5 = 0 and 3x – 4y – 7 = 0 are the diameters of a circle, then its centre is:
Show that 2x2 + 3xy − 2y2 + 3x + y + 1 = 0 represents a pair of perpendicular lines
Show that the equation 2x2 − xy − 3y2 − 6x + 19y − 20 = 0 represents a pair of intersecting lines. Show further that the angle between them is tan−1(5)
Find the separate equation of the following pair of straight lines
3x2 + 2xy – y2 = 0
The slope of one of the straight lines ax2 + 2hxy + by2 = 0 is twice that of the other, show that 8h2 = 9ab
The slope of one of the straight lines ax2 + 2hxy + by2 = 0 is three times the other, show that 3h2 = 4ab
Find the value of k, if the following equation represents a pair of straight lines. Further, find whether these lines are parallel or intersecting, 12x2 + 7xy − 12y2 − x + 7y + k = 0
For what values of k does the equation 12x2 + 2kxy + 2y2 +11x – 5y + 2 = 0 represent two straight lines
Prove that one of the straight lines given by ax2 + 2hxy + by2 = 0 will bisect the angle between the coordinate axes if (a + b)2 = 4h2
Choose the correct alternative:
Equation of the straight line that forms an isosceles triangle with coordinate axes in the I-quadrant with perimeter `4 + 2sqrt(2)` is
Choose the correct alternative:
The coordinates of the four vertices of a quadrilateral are (−2, 4), (−1, 2), (1, 2) and (2, 4) taken in order. The equation of the line passing through the vertex (−1, 2) and dividing the quadrilateral in the equal areas is
Choose the correct alternative:
The image of the point (2, 3) in the line y = −x is
Choose the correct alternative:
One of the equation of the lines given by x2 + 2xy cot θ – y2 = 0 is
If `"z"^2/(("z" - 1))` is always real, then z, can lie on ______.