Advertisements
Advertisements
प्रश्न
Find the slope, x-intercept, y-intercept of the following line : 2x + 3y – 6 = 0
उत्तर
Given equation of the line is 2x + 3y – 6 = 0
Comparing this equation with ax + by + c = 0, we get
a = 2, b = 3, c = – 6
∴ Slope of the line = `(-"a")/"b" = (-2)/3`
x-intercept = `(-"c")/"a" = (-(-6))/2` = 3
y-intercept = `(-"c")/"b" = (-(-6))/3` = 2
APPEARS IN
संबंधित प्रश्न
The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equations of side BC
The vertices of a triangle are A(3, 4), B(2, 0) and C(1, 6). Find the equation of the median AD.
Find the x and y-intercepts of the following line: 2x – 3y + 12 = 0
Find the equations of a line containing the point A(3, 4) and making equal intercepts on the co-ordinate axes.
Find the equations of the altitudes of the triangle whose vertices are A(2, 5), B(6, – 1) and C(– 4, – 3).
Find the slope, x-intercept, y-intercept of the following line : x + 2y = 0
Write the following equation in ax + by + c = 0 form: y = 2x – 4
Write the following equation in ax + by + c = 0 form: y = 4
Reduce the equation 6x + 3y + 8 = 0 into slope-intercept form. Hence, find its slope.
Verify that A(2, 7) is not a point on the line x + 2y + 2 = 0.
Find the X-intercept of the line x + 2y – 1 = 0
Find the equation of the line: having slope 5 and containing point A(– 1, 2).
Find the equation of the line: containing the point (2, 1) and having slope 13.
Find the equation of the line: through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co-ordinate axes.
Find the equation of the line: having slope 5 and making intercept 5 on the X−axis.
The vertices of a triangle are A (1, 4), B (2, 3) and C (1, 6). Find equations of the sides