Advertisements
Advertisements
प्रश्न
Find the square roots of – 6 + 8i
उत्तर
Let `sqrt(- 6 + 8"i")` = a + ib
Squaring on both sides
– 6 + 8i = (a + ib)2
– 6 + 8i = a2 – b2 + 2iab
Equating real and imaginary parts
a2 – b2 = – 6 and 2ab = 8
Now (a2 + b2)2 = (a2 – b2)2 + 4a2b2
= (– 6)2 + (8)2
= 36 + 64 = 100
∴ a + b2 = 10
Solving a2 – b2 = – 6 and a2 + b2 = 10
We get 2a2 = 4, b2 = 8
a2 = 2
b2 = `+- 2sqrt(2)`
a = `+- sqrt(2)`
∴ `sqrt(- 6 + 8"i") = +- sqrt(2) +- "i"2sqrt(2)`
= `+- (sqrt(2) + "i" 2sqrt(2))`
Aliter:
Square root of – 6 + 8i
Let a + ib = – 6 + 8i
a = – 6, b = 8
|z| = `sqrt(6^2 + 8^2)`
= `sqrt(100)`
= 10
`sqrt("a" + "b") = +- [sqrt((sqrt("a"^2 + "b"^2) + "a")/2) + "i" "b"/|"b"| sqrt((sqrt("a"^2 + "b"^2) - "a")/2)]`
= `+- [sqrt((10 - 6)/2) + "i" sqrt((10 + 6)/2)]`
= `+- [sqrt(2) + "i" 2sqrt(2)]`
APPEARS IN
संबंधित प्रश्न
Find the modulus of the following complex numbers
`(2 - "i")/(1 + "i") + (1 - 2"i")/(1 - "i")`
For any two complex numbers z1 and z2, such that |z1| = |z2| = 1 and z1 z2 ≠ -1, then show that `(z_1 + z_2)/(1 + z_1 z_2)` is real number
If |z| = 3, show that 7 ≤ |z + 6 – 8i| ≤ 13
If |z| = 1, show that 2 ≤ |z2 – 3| ≤ 4
If |z| = 2 show that the 8 ≤ |z + 6 + 8i| ≤ 12
If z1, z2 and z3 are three complex numbers such that |z1| = 1, |z2| = 2, |z3| = 3 and |z1 + z2 + z3| = 1, show that |9z1z2 + 4z1z3 + z2z3| = 6
If the area of the triangle formed by the vertices z, iz, and z + iz is 50 square units, find the value of |z|
Show that the equation `z^3 + 2bar(z)` = 0 has five solutions
Find the square roots of 4 + 3i
Find the square roots of – 5 – 12i
Choose the correct alternative:
If = `((sqrt(3) + "i")^3 (3"i" + 4)^2)/(8 + 6"i")^2`, then |z| is equal to
Choose the correct alternative:
If |z – 2 + i| ≤ 2, then the greatest value of |z| is
Choose the correct alternative:
If (1 + i)(1 + 2i)(1 + 3i) ……. (l + ni) = x + iy, then 2.5.10 …… (1 + n2) is
Choose the correct alternative:
If α and β are the roots of x² + x + 1 = 0, then α2020 + β2020 is
The square roots of -18i are ______
If α and β are roots of the equation x2 + 5|x| – 6 = 0, then the value of |tan–1α – tan–1 β| is ______.