मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

For any two complex numbers z1 and z2, such that |z1| = |z2| = 1 and z1 z2 ≠ -1, then show that z1+z21+z1z2 is real number - Mathematics

Advertisements
Advertisements

प्रश्न

For any two complex numbers z1 and z2, such that |z1| = |z2| = 1 and z1 z2 ≠ -1, then show that `(z_1 + z_2)/(1 + z_1 z_2)` is real number

बेरीज

उत्तर

Given |z1| = |z2| = 1 and z1z≠ 1

|z1|2 = 1

|z2|2  = 1

`"z"_1 bar("z")_1` = 1

Similarly `"z"_2 bar("z")_2` = 1

z= `1/bar(z)_1`

z2 = `1/bar(z)_2`

`(z_1 + z_2)/(1 + z_1z_2) = (1/bar(z)_1 + 1/bar(z)_2)/(1 + 1/bar(z)_1 1/bar(z)_2)`

= `((bar(z)_2 + bar(z)_1)/(bar(z)_1 + bar(z)_2))/((bar(z)_1 bar(z)_2 + 1)/(bar(z)_1 bar(z)_2))`

= `(bar(z)_1 + bar(z)_2)/(1 + bar(z)_1 bar(z)_2)`

= `(bar(z_1 + z_2))/(bar(1 + z_1 + z_2))`

= `bar(((z_1 + z_2)/(1 + z_1 + z_2))`

∴ `(z_1 + z_2)/(1 + z_1 z_2) = bar(((z_1 + z_2)/(1 + z_1 + z_2))`

∴ `(z_1 + z_2)/(1 + z_1 z_2)` is real.

Since z = `bar(z)` [z is real]

Since z = `bar(z)`, it is a real number.

shaalaa.com
Modulus of a Complex Number
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Complex Numbers - Exercise 2.5 [पृष्ठ ७२]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 2 Complex Numbers
Exercise 2.5 | Q 2 | पृष्ठ ७२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×